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INTRODUCTION 

Proteins play a prominent role in all biological systems. Almost all 

chemical reactions that take place in living cells are catalyzed by 

enzymes and all known enzymes are proteins. For these reasons the study 

of proteins has attracted scientists from a wide range of disciplines. 

Hemoglobin and myoglobin, in particular, have been used as model systems 

for the study of proteins and enzymes in general. The relative simplicity 

of the myoglobin molecule made it the protein of choice for x-ray 

crystallographic studies. Elucidation of its three-dimensional structure 

has made it uniquely suitable for interpretation of results on the molecu

lar level. 

Investigators in medical disciplines are interested in the possible 

involvement of myoglobin in muscular diseases. Physiologists are concerned 

with its role as an oxygen carrier. Food scientists are interested in the 

phenomenon of autoxidation as it relates to meat color. Biochemists have 

been interested in all the above aspects as well as the microheterogeneity 

of the protein. Biological reasons for the microheterogeneity of many 

enzymes catalizing metabolic processes are well established. However, 

there seems to be no obvious biological reason for the existence of more 

than one type of myoglobin. Colvin et al. (1954) suggested that micro

heterogeneity is so commonly encountered in proteins that biochemists might 

well regard any given protein as a family or group of molecules having the 

same biological function but differing slightly in composition. In review

ing the literature on the microheterogeneity of proteins one might well 

subscribe to this idea. 
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However, a review of the literature on the microheterogeneity of 

myoglobin brings forth such a conglomeration of varied results that one 

cannot help but speculate on the artifactual nature of some of the find

ings . 

Because a non-heme protein consistently accompanied myoglobin isolated 

from most species by a variety of methods, it seemed likely that the micro

heterogeneity of this protein might be an artifact resulting in some way 

from the presence of this colorless contaminant. Evidence accumulated in 

the course of this study pointed to the contrary. However, it soon became 

apparent that the number of fractions obtained in chromatography and 

electrophoresis of myoglobin from a single species could be varied greatly 

depending on the experimental conditions employed. 

Consequently, this study was directed toward determining the experi

mental conditions which produce such widely differing results with myo

globin from a single species. Particular attention was given to column 

length, amounts of myoglobin chromatographed and equilibrating pH. A 

common denominator was sought to help explain the chromatographic and 

electrophoretic results of microheterogeneity that have been reported for 

this protein. 
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REVIEW OF LITERATURE 

Chemistry of Myoglobin 

Generally vertebrate and invertebrate muscle cells differ from other 

cells in that their sarcoplasmic fraction contains myoglobin. Muscles of 

diving mammals such as the whale are particularly high in myoglobin con

tent. This probably facilitates submersion for long periods. 

Myoglobin is a globular heme protein that serves to store molecular 

oxygen. It accepts oxygen from the lungs via hemoglobin. In muscles at 

rest myoglobin is oxygenated. During contraction the demand for oxygen 

is greatest ; as the intracellular oxygen pressure falls, oxygen dissoci

ates from myoglobin and is released to cytochrome oxidase. Cytochrome 

oxidase has a greater affinity for oxygen than myoglobin, and myoglobin has 

a greater affinity for oxygen than hemoglobin. Much of the myoglobin is 

free in solution in the muscle fibers. However, Criddle et al. (1961) 

suggested that, in vivo, some myoglobin seems to be bound to the lipid 

layer on the outside membrane of the mitochondrion. This places myoglobin 

near the end of the electron transport system close to cytochrome oxidase. 

Thus the stored oxygen is readily available for reduction to water whenever 

the metabolic activity of the cell demands it. 

In order to bind oxygen the iron in the heme has to be in the reduced 

or divalent state. In this form the heme-protein is referred to as re

duced or deoxymyoglobin (Mb). Nobbs, Watson and Kendrew (1966) studied 

o 
deoxymyoblobin by the x-ray diffraction technique at the 2.8 A level. With

in limits imposed at this level of resolution they found that the conforma

tion of deoxymyoglobin is the same as that of oxidized myoglobin. However, 
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in deoxymyoglobin there is no water molecule or other group at the sixth 

coordination position. 

In the oxygenated form the heme has a divalent iron atom which has 

its sixth coordination position occupied by molecular oxygen. This form 

is referred to as oxymyoglobin (MbOg). When the iron atom in the heme is 

oxidized to the trivalent state, the herne-protein is called ferrimyoglobin 

or metmyoglobin (MetMb). In this form the sixth coordination position of 

the iron is bonded to a water molecule. 

Myoglobin is a monomer with a molecular weight of approximately 

17,000. Its single polypeptide chain consists of 153 amino acids linked 

to an iron complex of Protoporphyrin IX. 

Heme is composed of four pyrrole rings linked by four methene groups. 

Eight of the hydrogens on the pyrrole rings are substituted by three types 

of side chains: methyl, vinyl and propionic acid. The iron occupies a 

central position in the ring. Hexa coordination of the iron atom is 

assumed in iron-porphyrin compounds. Four of the bonds lie in the plane 

of the ring and are equally bound to the pyrrole nitrogens. The other two 

bonds are available for attachment to other groups and lie perpendicular 

to the plane of the ring. 

Edmundson and Hirs (1961, 1962a, 1962b, 1962c) and Edmundson (1965) 

chemically determined the complete sequence of amino acid residues in 

sperm whale myoglobin. This analysis revealed that the myoglobin molecule 

Mb(Fe'^) + O2 - ± MbOg (Fe"^) 

MetMb (Fe"^) 
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contains 153 amino acid residues and possesses a molecular weight of 

17,816. 

Crystalline myoglobin 

Kendrew et al. (1958), Bodo et al. (1959), Kendrew et al. (1960), 

Kendrew et al. (1961) and Kendrew (1963) used x-ray diffraction crystallog

raphy to resolve the three-dimensional structure of sperm whale myoglobin. 

o o 
The 2A resolution and the partially completed 1.4 A resolution confirmed 

independently the results obtained by Edmundson and Hirs. Furthermore, 

the results provided the first information on the complete tertiary struc

ture of a protein. This study revealed the spatial conformation of all 

1260 atoms, other than hydrogen, which make up the myoglobin molecule. Of 

the 153 residues in the molecule, 118 of them, or 77%, are involved in 

eight right-handed alpha-helical segments which make up the straight seg

ments of the chain. There also are eight non-helical regions; seven of 

these are interposed between helical segments and one is at the carboxyl 

end of the chain. All four proline residues correspond to the corners in 

the chain. 

The polypeptide chain is tightly wound around the heme portion giving 

the whole molecule a spherical appearance. There are no disulfide bridges 

or sulfhydryl groups stabilizing the structure. Stabilization of the 

molecule seems largely due to hydrophobic interaction of non-polar side 

chains. The structure seems compact with almost no liquid inside. The in

terior of the molecule is largely hydrophobic. About 30% of the polar and 

45% of the non-polar side chains are directed to the inside. Some 70% of 

the polar side chains of the amino acid residues are directed to the out
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side. Two notable exceptions are the nitrogens of the histidine residues 

F-8* and E-7* which are in contact with the heme. The fifth coordination 

position of the iron in the heme is linked to the 3-nitrogen of the proxi

mal F-8 histidine residue. In metmyoglobin the sixth coordination posi

tion of the iron binds water which, in turn, is hydrogen-bonded to the 3-

nitrogen of the distal E-7 histidine residue. The E-7 histidine is located 

on the opposite side of the heme from F-8 and approximately 9 ̂  removed 

from the heme iron (Stryer et al., 1964). In the crystal, however, the 

E-7 histidine residue also binds to a sulfate ion. The two polar pro

pionic acid chains of the heme stick out toward the surface of the mole

cule; one is linked to the CDS arginine. 

All polar groups on the surface including the peptide CO and NH groups 

interact either with nearby groups or else with water molecules. Of the 

20-30 sulfate ions contributed by the ambient solution there are only two 

sulfate ions bound to the crystal; one is bound to the 1-nitrogen of the 

E-7 histidine (Stryer et al., 1964), the other is bound to the peptide NH 

groups of the E-2 and E-3 residues. 

Three of the 12 histidine residues are on the inside of the molecule. 

Five are completely exposed to the solvent and four are partially exposed. 

''Notation used by Kendrew et al. (1961) to designate the position of 
specific amino acids. Single letters, e.g. F or E, were used to designate 
helical segments, starting with A at the amino end of the molecule and 
progressing to H at the carboxyl end. Double letters, e.g. EF, were used 
to designate the non-helical segment lying between the two helices that 
are designated by the single letters. Arabic numerals following each 
letter, or combination of letters, designate the position, in sequence, of 
an amino acid in that particular segment of the chain, starting with 1 at 
the amino end. 
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Myoglobin in solution 

The x-ray crystallographic determination of the three-dimensional 

structure of sperm whale myoglobin and the concomitant chemical analysis 

of the sequence of amino acids in the chain made it desirable to obtain 

information on this molecule in solution. Since all the work in this and 

other studies on the microheterogeneity of the myoglobin molecule were con

ducted on the protein in solution, it is of importance to review the facts 

known about its properties in solution, as well as the facts known about 

the myoglobin crystal. 

The stability of myoglobin in solution over a wide range of pH's was 

well documented by Theorell and Ehrenberg (1951) and George and Hanania 

(1952). There is virtually no change in the spectrum of this protein from 

about pH 4.5 to slightly over 7.0. Below pH 4.5 there is an abrupt and 

drastic lowering of the Soret peak (409 nm). At pH values above 7.0 

George and Hanania showed that there is a gradual decrease in the Soret 

peak due to the dissociation of a hydrogen ion from the water molecule that 

is bound to the heme. 

+ / ̂ ^ + 
Fe — 0 Fe — 0 —H + H 

Theorell and Ehrenberg found the pK of this dissociation to be 8.84 for 

horse heart metmyoglobin. Breslow and Curd (1962) found the pK to be 8.90 

for sperm whale metmyoglobin. 

Beychok and Blout (1961) measured the optical rotatory dispersion of 

sperm whale metmyoglobin and reported 75 to 80% helical content for the 

protein in solution. Urnes, Imahori and Doty (1961) concluded that this 

molecule contains about 73% of right-handed alpha-helix. Within 
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experimental and computational uncertainty, these values are comparable 

to the 77% alpha-helix determined by Kendrew et al. (1961) through x-ray 

diffraction studies of the myoglobin crystal. Samejima and Yang (1964) 

found that sperm whale metmyoglobin and its four derivatives (ferro-, 

carbonmonoxy-, oxy- and cyan-myoglobin) had the same rotatory properties, 

indicating the absence of drastic conformational changes in the protein 

portion accompanying formation of the complexes. 

Beychok, De Loze^and Blout (1962) found that the acid-denatured pro

tein had a helical content of 10 to 30% depending on the conditions of 

denaturation, namely, pH and ionic strength. Beychok and Steinhardt (1960) 

had shown that the velocity of regeneration of acid-denatured ferrihemo-

globin depended upon the pH and temperature at which the protein was 

denatured. Intrinsic viscosities of the denatured products were found to _ 

increase with decreasing pH, ionic strength and temperature. Under con

stant regeneration conditions they found that the greater the intrinsic 

viscosity of the denatured protein, the more rapid the regeneration 

velocity constant. Yet, helical content was shown to decrease with de

creasing pH and ionic strength. It is not yet understood why the velocity 

of regeneration is greater for molecules possessing lower helix contents, 

or why regeneration rate constants, in a constant environment, depend on 

the denatured state. However, it cannot be concluded that residual helix 

content is unnecessary for regeneration; even at very low pH's Beychok and 

Steinhardt found a small residual helix content was retained. 

Harrison and Blout (1965) suggested that the amino acid sequence alone 

is sufficient to determine the conformation assumed by the protein in solu

tion. This hypothesis was based on results of studies on the 
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conformational changes of myoglobin and apomyoglobin in solution. They 

found that heme removal resulted in a 20% loss of helical structure. Com

plete loss of helical structure was caused by 8 M urea; this loss was com

pletely recovered by dialysis against water or buffer. Recombination of 

the heme and apoprotein resulted in full recovery of native myoglobin heli

cal content. 

Similarly, Breslow et al. (1965) reported changes in optical rotation 

of sperm whale metmyoglobin following removal of the heme group. This in

dicated that the apoprotein has a different conformation than metmyoglobin. 

Such changes in conformation were also indicated by Breslow (1962, 1964a) 

and Banaszak et al. (1963b). They found that removal of heme from sperm 

whale myoglobin resulted in changes in side chain reactivity to hydrogen 

ions. Titration curves showed that at least three imidazoles are released 

into ion equilibrium upon removal of heme from myoglobin. Eleven 

imidazoles are carboxymethylated after heme removal as compared with eight 

imidazoles in native myoglobin. The one unreactive imidazole in globin 

was identified as the heme-propionate-linked imidazole in metmyoglobin 

(Breslow, 1964a). Large differences in tyrosine ionization between apomyo

globin and several myoglobin derivatives were also demonstrated. Similar

ly, Williams (1966) showed that two tryptophyl residues in metmyoglobin 

appear to be partially exposed to selected spectral perturbants; whereas 

both residues are completely exposed in acid-denatured metmyoglobin. 

Changes in imidazole and tyrosine reactivity upon removal of the heme 

from myoglobin led Breslow (1964a) to suggest that binding of an apoprotein 

to its prosthetic group could lead to conformational changes in regions of 

the protein not necessarily proximal to the binding site. 
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Breslow and Koehler (1965) tried to determine whether the properties 

of myoglobin could be restored in the absence of the heme iron. They 

found that the alpha-helical content of the interaction product of Proto

porphyrin IX and globin was the same as the alpha-helical content of 

metmyoglobin. This suggested that the binding of the Protoporphyrin IX 

ring, rather than the protein-iron linkages, determines the conformational 

differences between globin and metmyoglobin. 

Breslow and Curd (1962) showed that there is a very rapid uptake of 

six hydrogen ions per molecule of protein when myoglobin is titrated with 

hydrogen ions beginning at pH 4.5; i.e. there is only a small change in pH 

of the solution as these protons are added. Analysis of the titration 

curves indicated that the groups that become available abruptly at pH 4.5 

or below are imidazole groups of histidine side chains which were previous

ly buried due to the native conformation of the molecule. 

Supporting evidence for the number of "buried" and exposed histidine 

groups was obtained by another approach. Nucleophilic groups catalyze the 

hydrolysis of p-nitrophenyl acetate to p-nitrophenol and acetic acid. 

Koltun et al. (1958, 1959 and 1963) showed that this method can be used to 

determine the number of such groups that are available on any given protein 

or peptide. Studies over a wide range of pH values can show which of the 

following groups are involved: alpha amino, epsilon amino, imidazole or 

phenol groups. Using this technique Breslow and Gurd (1962) showed that 

about six imidazoles catalyzed the hydrolysis of p-nitrophenyl acetate at 

pH 4.5 or above but nearly all twelve histidines were involved when the 

protein was denatured. However, upon returning to pH values near six 

after denaturation, the rate of hydrolysis was greatly increased over that 
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of native protein. This was taken to indicate that the polypeptide chain 

does not completely regain its native conformation when brought to neutral

ity after hydrogen ion titration. 

Banaszak et al. (1963a) classified reactive and unreactive histidyl 

groups on the basis of alkylation of netmyoglobin with bromoacetate at pH 

7.0. This reaction results in the carboxymethylation of eight histidine 

residues. Banaszak and Gurd (1964) showed that the four histidines which 

remained unreactive were C-1, F-8, ?G-3 and EF-5. Carboxymethylation is a 

non-reversible reaction whereas hydrogen ion titrations and the p-nitro-

phenyl acetate reaction are reversible. Banaszak et al. (1963a) explained 

the two additional reactive histidine residues on this basis. Because the 

alkylation is not reversible, a slight change in conformation that tempor

arily exposes the two histidines will result in the irreversible car

boxymethylation but will be reversed during the hydrogen ion titration or 

p-nitrophenyl acetate reaction. 

Further studies by Banaszak et al. (1953b) showed that all lysyl 

residues in metmyoglobin are exposed and reactive. This was sho;m. by 

guanidination of lysyl residues with 0-methylisourea to yield homoarginyl 

residues without disruption of the peptide linkages. 

Binding of metal ions 

Breslow and Gurd (1963) showed that the binding of zinc and cupric 

ions to metmyoglobin resulted in the lowering of the pH of the solution. 

This indicated the displacement of hydrogen ions by the metals, showing 

that they competed for the same binding site on the protein. At a given 

pH zinc was found to displace fewer hydrogen ions than copper. This 



www.manaraa.com

12 

indicated that zinc is a weaker competitor than copper for the binding 

sites on the protein. Furthermore, cupric ions were found to displace 

zinc ions after the latter were bound; this indicated competition between 

the two metals for the same sites. 

Breslow and Gurd (1963) also performed titration studies on myoglobin 

in the presence of metal ions. The results indicated that imidazole 

groups took part in the chelation of cupric ions. However, on the basis of 

catalyzing the hydrolysis of p-nitropheny1 acetate, the same number of 

histidines were reported exposed as in the absence of cupric ions. This 

indicated that the cupric ions were either bound to histidine residues that 

were normally "buried" or that the normally "buried" histidine residues 

became exposed upon binding to the metal. 

Breslow and Gurd (1963) and Breslow (1964b) showed that one or two 

more protons are released by the binding of each cupric ion than could be 

accounted for by the imidazole alone. It was shown that these protons 

were not released by epsilon-amino groups of lysine; no change was produced 

in the titration of guanidinated myoglobin in the presence of cupric ions 

where the epsilon-amino group was replaced by guanidinium groups. After 

the binding of one or two cupric ions to each myoglobin molecule there was 

a considerable change in the solubility of the protein-metal complex. Also, 

there was a drastic decrease in absorption at the Soret peak (409 nm), and 

a slight increase in absorption at 370 nm. These changes were similar to 

those observed upon acid-denaturation and suggested a change in linkage to 

the imidazole group of the F-8 histidine residue. 

The above evidence suggests the probability of conformational changes 

upon binding of metal ions to the protein, Cann (1963, 1964a, 1964b) 
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concluded, on the basis of spectral analysis alone, that conformational 

changes are produced in myoglobin upon binding with zinc. He found that 

these large changes in the ultraviolet and visible absorption spectra are 

completely reversible. These differences were similar to the spectral 

changes that occur with acid-denaturation of the protein, the major differ

ence being in the wavelength of maximum absorption. With zinc-reacted 

myoglobin this occurs at 390 nm whereas with acid-denatured protein it 

occurs at 370 nm. He found that zinc is bound to two ionizable groups on 

the protein causing concomitant conformational changes. The decrease in 

Soret absorption was interpreted as resulting from the rupture of the 

otherwise inaccessible iron-imidazole linkage and occupancy of the 

imidazole by zinc ion. Supporting evidence of this was found in the fact 

that carbonmonoxymyoglobin is very much less reactive toward zinc than 

metmyoglobin. Also, zinc-reacted ferro-proteins are very sensitive to 

oxidation. 

Binding of other ions 

Gillespie et al. (1966) found that incompletely deionized prepara

tions of sperm whale myoglobin were much more resistant to denaturation by 

cupric ions than preparations that were completely deionized. Dialyzed 

preparations generally reached a pH of about 7.2. Deionized preparations 

varied between 7.80 and 7«95. This indicated the binding of some anion by 

sperm whale myoglobin. Breslow and Gurd (1962) had found that a shift in 

pH from 7.2 to 7.9 corresponded to a titration of nearly two units of 

charge. 

Stryer, Kendrew and Watson (1964) had shown by x-ray crystallography 
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that the binding of an azide ion by sperm whale myglobin is accompanied by 

the release of the sulfate ion. The azide ion displaces the water molecule 

at the sixth coordination position of the heme iron, and there is a con-

o 
comitant loss of a sulfate ion bound to metmyoglobin 9 A from the azide 

site. The sulfate ion is bonded to the distal histidine residue E-7 and 

the arginine residue at CD3. In metmyoglobin, one of the E-7 histidine 

nitrogen atoms is hydrogen-bonded to the water molecule at the sixth 

coordination position, while the other is hydrogen-bonded to the sulfate 

ion. Gillespie et al» (1966) hypothesized that phosphate might be bound 

to the E-7 histidine side chain in the crystalline protein structure. They 

reasoned that phosphate and sulfate have very similar size, shape and 

electron density. It would, therefore, be conceivable that the protective 

effect of phosphate ion in solution would depend on its binding to the 

site attributed to sulfate in the crystalline structure. A phosphate ion 

in that position would greatly minimize exposure to attack by cupric ion. 

This tentative proposal is similar to suggestions of Cann (1964a, 1965) 

concerning denaturation by zinc ions. 

The Microheterogeneity of Proteins 

Evidence for the microheterogeneity of proteins began to accumulate 

in the early 1940's as techniques and instruments became increasingly sen

sitive. Proteins that were previously assumed homogeneous were shown to 

exhibit minor differences when subjected to sensitive analytical methods 

such as ultracentrifugation, chromatography, electrophoresis, immunologi

cal reactions and the study of amino acid sequences. Some proteins seemed 

"pure" by one method but heterogeneous by another. "Purity" of a protein 
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became a relative concept signifying no demonstrable heterogeneity by 

available methods. 

Synge (1949) coined the term "microheterogeneity" and suggested that 

proteins, like peptides, might occur in "families". Colvin, Smith and 

Cook (1954) reviewed reports of the microheterogeneity of proteins cover

ing the period 1945-1953. Their definition of microheterogeneity, based 

on Synge's concept, was 

...a protein preparation will be said to be microheterogeneous if 
there is experimental evidence for one or more minor differences 
between individual protein molecules of the preparation, over a 
period which is long compared with the duration of the experiments. 

They listed twenty-three different proteins that were found microhetero

geneous by one method or another. Specific causative factors were given 

in only a few instances: 

Perlmann (1949, 1952, 1953) showed by enzymatic dephosphorylation that 

ovalbumin is a mixture of at least three electrophoretic forms which differ 

by zero, one or two phosphate groups per molecule. She showed that this 

microheterogeneity existed in ovalbumin as obtained from the hen's egg as 

well as after crystallization. 

Harfenist (1953), and Harfenist and Craig (1952a, 1952b, 1952c) 

showed that the two major components of crystalline insulin from beef pan

creas, which possess equal biological activity, differ by a single amide 

group. 

Paleus and Neilands (1950) showed that the three components obtained 

from chromatography on Amberlite IRC-50 of cow heart cytochrome c differed 

in iron content. 

The review by Colvin et al. (1954) prompted re-examination of many 
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geneity of proteins published since 1954 are too numerous to review here. 

Suffice it to say that some causes for microheterogeneity have been found 

to range from configurational changes to differences in primary structure, 

such as differences in sequence of amino acids, differences in prosthetic 

groups or polymers of different units (Feeney, 1964, p. 352). 

Among the more interesting observations on microheterogeneity is the 

report by Aoki and Foster (1956) that bovine serum albumin consists of 

three components in the region of the isoelectric point. They demon

strated that this heterogeneity is mainly due to a pK dependent transition 

of the normal form of the protein into a faster migrating form, presumably 

of a higher positive charge. The ratio of fast to slow forms was sho^vn to 

increase regularly with decreasing pH. Electrophoretic results indicated 

that the equilibrium reaction is slow. Sogami and Foster (1963) explained 

the microheterogeneity of bovine serum albumin on the basis of differences 

in the secondary and/or tertiary structure, possibly in the detailed pair

ing of the half-cysteine residues in the disulfide bridges. They suggested 

that these differences resulted in multiple forms of the protein which are 

capable of undergoing a transition or conformational change in acid solu

tion. 

The microheterogeneity of myoglobin 

In 1932 Theorell first succeeded in crystallizing myoglobin from 

horse heart. This pigment was previously referred to as muscle hemoglobin. 

The earliest report on the microheterogeneity of myoglobin came from 

Schmid (1949). He observed two or three boundaries in the electrophoresis 
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of crystallized finback-whale myoglobin between pH 4 and 11. 

This discovery led Theorell and Akeson (1955) to re-examine their 

crystallised horse myoglobin. They reported three electrophoretic com

ponents by the moving boundary technique. Lewis (1954), while working in 

Theorell's laboratory, had found evidence of this inhomogeneity in 

crystalline horse myoglobin by his acid-acetone splitting test. He deter

mined spectrophotometrically the amount of hemin cleaved after addition of 

a definite amount of myoglobin of known pH to acetone. The amount of hemin 

cleaved was calculated from the optical density readings and these values 

were plotted against the pH of the solution. A slight break was noticed 

in the pH 4.5 region showing less than 10% cleavage for metmyoglobin. 

Lewis though that this was probably due to the presence of other sub

stances seen on electrophoresis. 

Bovine myoglobin Lewis and Schweigert (1955) reported three 

electrophoretic components of approximately 80-20-1% proportions in 

crystalline beef myoglobin. These three components were found on paper as 

well as free boundary electrophoresis. They found no difference in these 

components in ultracentrifugal studies. However, no importance was 

attached to this since they were unable to separate a mixture of hemo

globin and myoglobin in the ultracentrifuge. 

Quinn, Pearson and Brunner (1964) separated bovine myoglobin into 

three fractions (I, and II) on Carboxymethyl Cellulose (CM-Cellulose) 

columns at pH 6.9. They were unable to resolve these fractions further 

on rechromatography at pH 6.4 or 8.5. Based on 280/525 nm ratios they 

found the first fraction contaminated with colorless protein. 
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Each of the two major CM-Cellulose fractions was further resolved in

to two broad diffuse bands on DEAE-Cellulose columns equilibrated with 

0.02M tris buffer, pH 8.3-8,4. However, on DEAE-Cellulose equilibrated 

with 0.02M tris buffer, pH 8.0 or 7.8, the two major CM-Cellulose frac

tions I and II were further resolved into 6 and 4 fractions respectively. 

Several of these bands disappeared with the use of OoOOlM KCN. Quinn 

et al. (1964) concluded that this confirms the conclusion of Perkoff et al. 

(1962) that myoglobin components which differ only in the state of the 

iron can be resolved on column chromatography. Both investigators reported 

that all fractions obtained from chromatography were heterogeneous on 

electrophoresis. They obtained a total of four electrophoretic components 

from the CM-Cellulose fractions with the discontinuous buffer system of 

Poulik (1957) and the starch gel technique. However, they obtained only 

three electrophoretic components from "crude", (NH^)2S0^ fractionated 

myoglobin. 

Quinn and Pearson (1964) found no differences in the absorption 

spectra and autoxidation rates of the three electrophoretically and 

chromatographically distinct myoglobin fractions obtained from beef muscle. 

They did, however, find a difference in light absorbance values and sus

ceptibility to acid cleavage for the three myoglobins. They drew the ten

tative conclusion that structural variations existed at the porphyrin-

^  j . 1 1 1  J . I . i n  ,  

DuFresne (1964) found that bovine myoglobin could not be chromato-

0 
graphed on CM-Cellulose columns using the method of Akeson and Theorell 

(1960). Though Quinn et al. (1964) used this method, DuFresne found that 

bovine myoglobin had little affinity for CM-Cellulose at pH 6.9 and moved 



www.manaraa.com

with the solvent front. At pH 6.0 to 6.6, she resolved bovine myoglobin 

into three fractions and . These fractions were preceded by a 

colorless, ultra-violet absorbing material not further identified. She 

observed that F^ and F^ accounted for 98% of the total myoglobin eluted 

but that Fr, varied greatly in size with different preparations. Column 

dimensions and size of the sample chromatographed were not included in her 

tabulation of results. Based on statistical analysis of beef heart myo

globin separated on CM Ifnatman paper strips, she concluded that the great 

variations in size of F^ resulted from differences between two animals. 

DuFresne used myoglobin obtained between 40 and 100% saturation with 

(NH^)2S0^. Okubo (1963) showed that though myoglobin began to precipitate 

at 60% saturation, these fractions contained many sarcoplasmic proteins. 

He showed that only the fraction obtained between 90-100% saturation was 

virtually free of hemoglobin. Myoglobin fractions obtained between 70-80% 

and 80-90% saturation contained hemoglobin. 

Horse myoglobin The first observation on the heterogeneity of 

horse myoglobin by Theorell and Skeson (1955) showed that the three elec-

trophoretic components could not be separated by repeated re-crystalliza

tion of the protein. Only the two major components Mb I and II were homo

geneous by electrophoresis. 

o 
In 1960 Akeson and Theorell used an improved procedure to isolate 

three homogeneous myoglobin components. Ten grams of myoglobin purified 

by (NH^)2S0^ fractionation was chromatographed on a 6.5x 20 cm CM-Cellulose 

column equilibrated with 0.02 M phosphate buffer, pH 6.9. Colorless pro

tein emerged almost immediately from the column, followed by two broad 
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bands of myoglobin. The faster column component consisted mainly of the 

electrophoretic component Mb II with some Mb I and III, Mb I being the 

major electrophoretic component, Mb III the minor fastest-moving component. 

The slower column fraction was almost all Mb I, the slow electrophoretic 

component, with some Mb II still present. 

The slow, most positively charged column fraction was rechromato-

graphed on CM-Cellulose at pH 6.4. This resulted in the separation of two 

components: the slow column fraction was equated with the electrophoretic 

Mb I, the fast column fraction with electrophoretic component Mb II. Ifhen 

a colorless zone of 3-4 cm separated the two fractions on the column, the 

cellulose was pushed out of the column and the fractions were cut out and 

eluted. Electrophoresis at pH 6.0, 8.0 and 9.8 showed that Mb I migrated 

as a homogeneous protein. On rechromatography Mb II, the most negatively 

charged fraction, was resolved into three fractions that were equated with 

Mb III, II and I in order of their emergence from the column. These were 

precipitated with ammonium sulfate and subjected to electrophoresis. None 

of them were electrophoretically homogeneous. Upon repeated separation on 

DEAE-Cellulose and CM-Cellulose Theorell finally resolved these mixtures 

into two components that were electrophoretically homogeneous at pH 6.0, 

8.0 and 9.8. The third component Mb III was apparently lost on rechroma- • 

tography. Crystallization of the two homogeneous components Mb 11^^ and 

II2 showed that their crystals had the same shape as Mb I. 

Analysis of the three homogeneous myoglobins showed that they had the 

same iron and sulfur content. No significant differences were found in 

their amino acid composition. Light absorption spectra were identical with 

only small differences at 235-280 nm, and the three myoglobins could not 
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be separated by ulcraccntrifugation. local amice content for all three 

myoglobins was che same and the X-cerminal amino acid was glycine. Porter 

and Sanger (1948) had shoi-jn chat glycine was che N-terminal amino acid in 

o 
unseparated horse myoglobin. Akeson (1962) further showed that the three 

fractions from horse myoglobin have the same C-terminal amino acids: 

Leu-Phe-Glu(NH?)-Gly(COOH). 

Akeson and Theorell (I960) further analyzed their column fractions by 

tryptic digest and the "fingerprinting" technique introduced by Ingram 

(1956, 1953). They obtained slightly more than the expected 22 peptides 

from each fraction. However, the fingerprints for all three were identi

cal except for finding two additional peptides in Mb 11^, one additional 

peptide in Kb I and no additional peptides in }Ib II-, . 

Vesterberg and Svensson (1966) developed a method of isoelectric focus

ing by electrophoresis which they applied to isoelectric fractionation of 

horse myoglobin. They claimed an accuracy of % 0.02 units in determining 

isoelectric points. Vesterberg (1967) determined the isoelectric points 

o 
of horse myoglobin fractions purified by the method of Akeson and Theorell 

(1960) . He reported the following isoelectric points for these metmyo-

globin fractions: Kb I, pi 7.76; Mb II., pi 7.32; Mb II^, ?I 7.26. He 

also found that Mb III, the fast-moving component from a CM-Cellulose 

column, consisted of three components with different isoelectric points: 

}Ib III^, pi 6.89; }Ib Illg, pi 6.85; Z-Ib III., pi 6.80 .  

Rat myoglobin Akeson et al. (1960) reported a study on rat myo

globin performed in vivo. They injected the radioisotope into rats 

and were able to show the existence of two species of myoglobin molecules 



www.manaraa.com

22 

in vivo. The main population of myoglobin was shown to have a half-life 

of 80-90 days, whereas the second, short-lived myoglobin molecule had a 

half-life of 20 days. This seems to be the only evidence of more than one 

type of myoglobin molecule in the living system. 

Human myoglobin It is well established that adult (C%2''/?2^ and 

fetal hemoglobin (Q.2~'y2^ have identical CC-chains but the ^-chain of 

the adult differs in primary structure from the ^/-chain of fetal hemo

globin (White, Handler and Smith, 1964). 

Interest in the microheterogeneity of human myoglobin stems partially 

from the controversial claim of the existence ot a fetal form of the pro

tein. Jonxis and Wadman (1952) claimed to have demonstrated a fetal form 

of myoglobin in calf heart. Singer, Angelopoulous and Ramot (1955) 

claimed to have demonstrated fetal myoglobin in heart and skeletal muscle 

of human fetuses. Perkoff and Tyler (1958), Perkoff (1964, 1965, 1966), 

Whorton, Hudgins and Connors (1961), Whorton et al. (1963), Benoit, Theil 

and Watten (1963, J.964), Theil and Williams (1967), Miyoshi et al. (1963) 

presented evidence for the existence of fetal myoglobin and for its occur

rence in various muscle diseases. Evidence against the existence of fetal 

myoglobin has been presented by Rossi-Fanelli et al. (1959), Schneiderman 

(1962), Kossman, Fainer and Boyer (1964) and Timmer et al. (1957). 

Wolfson et al. (1967) extracted myoglobin from adult and fetal muscle 

by two different techniques. The chromatographically separated heme pro

teins yielded identical electrophcretic patterns. However, the electro-

phoretic pattern of myoglobin from adult muscle was different from that of 

fetal muscle when myoglobin was extracted with 3 M phosphate buffer. They 
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found that the fast-moving electrophoretic component previously reported 

as fetal myoglobin by others resembled fetal hemoglobin by the following 

criteria: gel filtration, antigenicity, absorption spectra and peptide 

mapping. They found that fetal hemoglobin is soluble in 3 M phosphate 

buffer but adult hemoglobin is insoluble. Since all reports of fetal myo

globin resulted from studies of myoglobin separated from hemoglobin in 3 M 

phosphate buffer, Wolfson et al. concluded that the fetal myoglobin is 

really fetal hemoglobin. This was confirmed with peptide maps of tryptic 

digests of fetal muscle heme pigment and fetal hemoglobin. Theil and 

Williams (1967) made a similar independent observation. Based on absorp

tion spectra in the visible light range they reported that fetal myoglobin 

bore a greater resemblance to hemoglobin than to adult myoglobin. 

Perkoff et al. (1962) separated adult human myoglobin into four heme 

fractions that differed in color. These fractions were preceded by one 

non-heme fraction on DEAE-Cellulose at pH 7.85. They called the major 

fractions (brown), Fg (dark red) and F^ (reddish brown) in order of 

their emergence from the column. When F^ and F2 were rechromatographed 

under the same conditions, two components were obtained from each fraction. 

They suggested that the myoglobin in each fraction can be converted into 

the other chromatographic forms. However, rechromatography of F^ and F2 

as oxymyoglobin and cyanmetmyoglobin resulted in the elution of one peak. 

The multiple electrophoretic components in F^ and F2 were also eliminated 

in the cyanmet myoglobin form. Tryptic digests of F^ and F2 gave identi

cal two-dimensional peptide patterns. Perkoff et al. concluded that F^ 

and F2 were acid and alkaline metmyoglobin. 

Fg, the most negatively charged fraction, yielded six components on 
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rechromatography. also had a greater electrophoretic mobility than 

and F2. This fraction (F^) contained significant amounts of non-heme pro

tein which could not be completely separated on rechromatography. Analy

sis of tryptic digests of F^ revealed a small difference in peptides from 

F^ and F2 but results were inconclusive due to the contaminating protein. 

Whereas Perkoff et al. (1962) decreased multiple myoglobin bands on 

DEAE-Cellulose by using the oxy- and cyanmetmyoglobin forms, Wolfson et al. 

(1967) claimed to decrease the multiple bands to one component by using 

2-mercaptoethanol in the agar gel on electrophoresis. The latter finding 

is surprising in view of the fact that human myoglobin lacks both cysteine 

and cystine and consequently has no disulfide bridges. 

Seal myoglobin Rumen (1959) separated seal myoglobin into five 

fractions on CM-Cellulose columns at pH 8.5. She found that the rechroma-

tographed column fractions were homogeneous by moving boundary electro

phoresis. The isoelectric point, determined by moving boundary electro

phoresis, was near pH 8.05 for myoglobin I, the major component. Myoglobin 

II had an isoelectric point near pH 7.6. Due to lack of protein, the iso

electric points for myoglobin III, IV and V were not determined. Rumen 

found glycine to be the N-terminal group of all five components. Kendrew 

et al. (1954) had shown that glycine was the N-terminal amino acid of 

unpurified seal myoglobin. 

There was no difference in the minimum molecular weight of all five 

components. The sedimentation constant of the major component at 20°C was 

o 
found te be 1.95S, a value similar to that reported by Theorell and Akeson 

(1955) for horse myoglobin. All five components had the same crystals and 
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iron content, and showed only a slight difference in extinction coeffi

cients . 

Rumen, as others, noticed no difference in chromatograms run at 4°C 

and room temperature. 

Rumen and Appella (1962) studied the molecular association behavior of 

seal apomyoglobin I, the major component from CM-Cellulose chromatography. 

They found a single symmetrical peak in free boundary electrophoresis at 

pH 8, the isoelectric point of myoglobin I. At this pH they found no 

change in sedimentation coefficient with different ionic strengths. 

At acid pH's this protein showed a strong tendency to associate into 

components with a sedimentation coefficient of 4S. These 4S components 

could aggregate further into 8S components. Polymerization occurred be

tween pH 3 and 5, with maximum association between pH 4 and 5. They 

found that the sedimentation coefficients of the 1.9S, 4S and 8S components 

were independent of protein concentration. However, at an ionic strength 

of 0.1 the relative areas under the 4 and 8S peaks were dependent on pro

tein concentration. Increases in protein concentration increased the area 

under the fast 8S peak with a corresponding decrease in the area under the 

slow 4S peak. Rumen suggested that a slow interconversion of one component 

into the other might be occurring. 

Optical rotation measurements indicated partial unfolding of the 

molecule at pH 3 ; consequently, the aggregation is weaker and dependent 

on the ionic strength of the components. Rumen and Appella thus concluded 

that there is some correlation between charge, conformation and aggregation 

of apomyoglobin I. Determination of the molecular weights of the various 

polymers is in progress. 

I 
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Further evidence for the aggregation of myoglobin at low pH values was 

presented by Strausser and Bucsi (1965). They showed that human myoglobin 

aggregates at pH 4.5 or less. In fact, the lower the pH the more bands 

they obtained. 

Breslow and Rumen (1967) studied the reactivity of seal myoglobins to 

hydrogen ions. They determined that approximately the same number of 

histidines are masked to hydrogen ions in fractions I and II as in whale 

myoglobin. However, seal metmyoglobin was found more acid-labile than 

sperm whale metmyoglobin. Comparison of the titration of fraction V with 

fractions I and II (the major components) indicated that fraction V is 

missing at least two histidines which are normally exposed to solvent in 

fractions I and II. Presumably fraction V differs in conformation from 

fractions I and II. 

As with sperm whale myoglobin, Breslow and Rumen (1967) reported that 

a single tyrosine is masked in fraction I of seal myoglobin. 

Whale myoglobin Myoglobin from the sperm whale has been studied 

more extensively than that of any other species. Its high concentration 

in whale muscle results in gratifying yields upon isolation. Furthermore, 

o 
the complete elucidation of its three-dimensional structure at the 2 A 

level by Kendrew et al, (I960) and Kendrew et al. (1961) has given inves

tigators a unique advantage for interpreting results on the molecular 

level. This has made sperm whale myoglobin the protein of choice for a 

wide variety of studies. 

Edmundson and Hirs (1962a) resolved crystalline sperm whale myo

globin into at least five components on the carboxylic resin IRC-50. They 
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state that Boclo and Kendrew, in a personal communication, informed them of 

resolving this crystalline protein into at least four fractions on the 

sodium form of IRC-50. The four components representing 92% of the protein 

were shown to have identical amino acid compositions. The fifth component, 

namely the most negatively charged first fraction eluted from a pH 5.82 

column, was not obtained free of non-heme protein; however, it appeared to 

be very similar to, if not identical with, the composition of the other 

heme-containing components. 

Edmundson and Hirs (1962a) showed that sperm whale myoglobin is very 

sensitive to small shifts in pH on IRC-50 chromatography. They showed that 

at pH 5.92 the components moved relatively fast, with poor separation, 

whereas at pH 5.82 they moved much more slowly with partial resolution. 

Rechromatography on IRC-50 at pH 5.82 showed these fractions to be homo

geneous if allowances are made for tailing. 

Amino acid analysis of the non-heme component that preceded myoglobin 

showed that this colorless protein differed markedly in composition from 

the heme-containing fractions (Edmundson and Hirs, 1962a). Apparently the 

colorless protein is not the apoprotein from myoglobin. Atassi (1964) 

also found that the non-heme component that precedes sperm whale myo

globin on CM-Cellulose columns has an amino acid composition completely 

different from that of myoglobin. Furthermore, he reported that the non-

heme protein did not react with antiserum to myoglobin. 

Atassi (1964) resolved sperm whale myoglobin into eleven heme frac

tions on CM-Cellulose. He worked with the cyanmetmyoglobin derivative in 

order to eliminate differences due to acid-alkaline forms suggested by 

Perkoff et al. (1962). Atassi stated that he had previously found 
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cyanmetmyoglobin homogeneous by electrophoresis on cellulose acetate in 

pH 8,6 barbiturate buffer. However, he resolved cyanmetmyoglobin into 

four distinct components on starch-gel electrophoresis in the discontinu

ous buffer system of Poulik (1957) . 

Spectral analysis of CM-Cellulose fractions revealed that heme-

components II - IV were in the met form. Fractions V - XII had typical 

cyanmetmyoglobin spectra. 

Fractions II - XII had identical amino acid compositions which agreed 

well with those obtained by Edmundson and Hirs (1962a) for their major 

myoglobin component. 

However, Atassi (1964) found that all the myoglobin fractions inter-

converted. Each fraction, upon standing for a few hours, was transformed 

into all the others. He observed this transformation by both chroma

tography and electrophoresis. An equilibrium involving different poly

meric forms was ruled out; molecular weights of monomers were obtained for 

some of these components by means of sedimentation equilibrium studies. 

By immunoelectrophoresis Atassi showed that the multiple lines of 

identity obtained by the agar double diffusion technique were probably due 

to the conversion of one component to all the others. The fusion of all 

lines obtained at their ends indicated complete antigenic similarity. 

Atassi and Saplin (1966) reported similar results for finback whale 

myoglobin. They separated this protein into eight chromatographic heme 

components and one non-heme component. Interconversion of these compo

nents was found by both chromatography and electrophoresis. The 

chromatographic components were homogeneous by ultracentrifugation. 

Hardman et al. (1966) confirmed the microheterogeneity of sperm 
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whale myoglobin as reported by Edmundson and Hirs (1962a). Instead of 

isolating myoglobin by the procedure described by Kendrew and Parrish 

(1956), Hardman et al. used a zinc-ethanol preparation and CM-Cellulose 

columns. They separated myoglobin into at least four fractions; these were 

preceded by a non-heme component. They were not able to resolve myoglobin 

into homogeneous fractions on DEAE-Cellulose. Hardman et al. reported 

four and sometimes five electrophoretic components from native myoglobin 

by the disc gel apd vertical gel techniques. They found the major electro

phoretic components homogeneous on re-electrophoresis and implied electro

phoretic homogeneity for the two major chromatographic fraction from CM-

Cellulose. However, CM-Cellulose fractions were shown to react with anti-

myoglobin serum on Ouchterlony plates forming lines of identity with each 

other. They also reported that native myoglobin had the same number of 

electrophoretic components as cyanmetmyoglobin, guanidinated metmyoglobin 

and the apoprotein. Each band of the latter, however, migrated at a slow

er rate than the corresponding band in native myoglobin because of the re

moval of the two negative charges borne by propionic acid side chains of 

the heme and the partial negative charge due to the heme-bound hydroxyl 

ion. Hardman et al. concluded that the differences in myoglobin components 

probably reside in amino acid composition, sequence or both» They con

curred with the suggestion of Edmundson and Hirs (1961) and Edmundson 

(1965) that the differences may lie in variations of total amide content 

for the glutamic and aspartic residues. Hardman et al. (1966) found no 

supporting evidence for the acid-alkaline myoglobin mixture postulated by 

Perkoff et al. (1962), and none of their reported results gave any indica

tion of the interconversion of components. 
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Stockwell (1961) separated sperm whale myoglobin into two fractions 

on CM-Cellulose at pH 7.2» She called the major component fraction II. 

Tryptic digests of these two fractions were studied by the "fingerprinting" 

technique. The fingerprints were found to be identical except for the 

presence of one additional negatively-charged tyrosine-containing peptide 

in fraction I (the minor component). Amino acid analysis of the addition

al peptide revealed that it contained no lysine or arginine and must, 

therefore, represent the carboxyl-terminal peptide of the protein. This 

additional peptide was shown to contain glutamic acid, glycine, leucine 

and tyrosine. According to Edmundson and Hirs (1962a) the carboxyl-

terminal peptide of sperm whale myoglobin consists of glu.leu.gly.tyr.glu-

NHg' Stockwell suggested that the substitution of glutamic acid for a 

glutamine in the additional peptide would account for its greater negative 

charge. However, evidence for such a substitution was not presented. 

In conclusion, there seems to be no immediate explanation for the 

microheterogeneity of myoglobin. More than one fraction is obtained from 

myoglobin of various species on chromatography,and electrophoresis. A 

non-heme protein has been shown to accompany myoglobin isolated by differ

ent procedures. The number of fractions obtained on chromatography and 

electrophoresis seems to vary with the system used. No significant differ

ences have been found in primary structure of the different fractions. A 

difference in amide content has been suggested by Edmundson and Hirs (1961) 

and Edmundson (1965) as a possible explanation but no concrete evidence 

for this has been presented. Akeson and Theorell (1960) obtained up to 

two additional peptides in fingerprinting horse myoglobin fractions; Stock-

well (1961) found one additional peptide in fingerprinting sperm whale 
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myoglobin fractions. A difference in amino acid sequence would have re

sulted in the same number of peptides with one or more differing in 

mobility. The additional peptides suggest a difference in charge which 

might be due to a difference in amide content or sequence in some of the 

molecules. However, no differences in total amide content have been 

proven. Gillespie et al. (1966) suggested the attachment of a phosphate 

ion to the myoglobin molecule„ 

Rumen and Appella (1962) and Strausser and Bucsi (1965) showed that 

myoglobin tends to aggregate at pH values below 4.5. However, none of the 

experiments on microheterogeneity were carried out at such low pH values. 

Edmundson and Hirs (1962a) showed a pH dependent shift in elution curves 

of myoglobin. Throughout the literature, different elution curves have 

been reported, under various experimental conditions, for any one species. 

From two to eleven CM-Cellulose fractions have been reported for one 

species. However, no attempt has been made to correlate pH with some of 

the varied results obtained on chromatography and electrophoresis. 

The following sections represent a study of the experimental condi

tions that might lead to such varying results. An attempt is made to de

termine the effect of pH on chromatography and electrophoresis of bovine 

myoglobin, and to correlate the findings with proposed explanations for 

the microheterogeneity of that protein. 
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MATERIALS AND METHODS 

Materials 

Laboratory reagents 

Reagent-grade chemicals were used in all experiments. Water used in 

all procedures was deionized by passing distilled water through a mixed-

bed ion exchange resin then through an all-glass still. Its electrical' 

conductivity indicated an ion con-camination, expressed as sodium chloride, 

of less than 0.05 PPM. 

CM-Cellulose 

All CM-Cellulose used in the course of this study was purchased from 

the Sigma Chemical Company, St. Louis, Missouri. This cellulose was med

ium mesh with a capacity of 0.63 milliequivalents per gram. 

Methods 

CM-Cellulose columns 

Treatment of CM-Cellulose The cation exchanger was used in the 

potassium form. It was converted from the sodium form by equilibration 

with potassium phosphate buffer. Prior to use, all CM-Cellulose was 

treated in the following manner. 

The exchanger was suspended in an equal volume of 0.5 M NaCl-0.5 M 

NaOH and left in the cold overnight. It was then washed with 3-4 liters 

of warm (40-45°C) deionized water on a Buchner funnel using moderate suc

tion. The cellulose was then washed in room temperature deionized water 

until neutral. The preparation was then re suspended in an equal volume 
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of 0.5 M NaCl-0,5 M NaOH. After standing several hours with occasional 

stirring the CM-Cellulose was filtered and resuspended in 3-4 volumes 

deionized water for one hour. Décantation and washing of the cellulose 

with water was continued until the supernate was clear of fines upon 

standing for twenty minutes. 

Equilibration of CM-Cellulose The filtered CM-Cellulose was 

suspended in 3-4 volumes of 0.1 M potassium phosphate buffer of the de

sired equilibrating pH and placed on a magnetic stirrer for 1-2 hours. 

After filtering on a Buchner funnel this process was repeated twice, or 

until the cellulose suspension attained the desired pH. To adjust the 

ionic strength the process was then repeated using three changes of 0.01 M 

potassium phosphate buffer of the desired equilibrating pH. The CM-

Cellulose was left in the final equilibrating buffer until used. 

Operation of the columns Columns of the following dimensions were 

used: 1.5 x 23-25 cm, 2.5 x 5-8 cm, 2.5 x 17-18 cm, 2.5 x 60 cm. 

Gravity packed columns were developed at room temperature with start

ing pH's of 5.5, 5.9, 6.0 and 6.8. The protein was eluted from all 

columns by means of a pH gradient, except on pH 6.8 columns where the 

protein was eluted with the starting buffer. Pressure packing of columns 

did not alter the elution pattern. 

The pH gradients were established in two different ways, both giving 

the same end-results: 

a) 300 ml of 0.01 M potassium phosphate buffer at the equilibrating pH was 

placed in an Erlenmeyer flask on a magnetic stirrer. This was connected in 

a closed system by means of tygon tubing to another Erlenmeyer flask of 
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the same size and shape, containing an equal volume of 0,01 M potassium 

phosphate buffer, pH 7.4. The flask containing buffer of the starting pH 

was connected to a teflon-coated pump which, in turn, was connected to the 

column by means of teflon tubing. 

b) Two liters of 0,01 M potassium phosphate buffer, pH 6.0, was placed in 

a beaker on a magnetic stirrer. This was connected to an identical beaker 

with a second buffer consisting of 2 liters of 0.01 M potassium phosphate, 

pH 8.0. The beaker containing the lower pH buffer was connected to a 

teflon-coated pump which, in turn, was connected to the column by means of 

teflon tubing. This pH gradient was used primarily for the 2.5 x 60 cm 

column. 

A ïfhatman No. 1 filter paper was cut to size and placed on top of the 

column bed. Metmyoglobin samples between 23 and 704 mg in 5-20 ml of 

equilibrating buffer were placed on top of the filter paper and allowed to 

adsorb to the top of the column bed. A buffer head of 15-200 ml was 

pipetted on to the columns before starting the elution. " ~ 

Myoglobin was eluted at the rate of 1 ml per minute and collected in 

7-8 ml fractions. The absorbance of the fractions was measured at 280 nm 

and 409 nm in a Zeiss spectrophotometer. The percentage of myoglobin in 

fractions eluted from CM-Cellulose columns was calculated from the area 

under the 280 nm peak of the elution curve. The area under each peak was 

estimated as the area of a triangle. Spectra were recorded in the visible 

and ultraviolet range on a Beckman DK-2A recording spectrophotometer. 

In order to compare electrophoretic patterns of eluted CM-Cellulose 

fractions to patterns obtained after separation of the myoglobin on the 

column without complete elution, a pH 6.0, 2.5 x 22 cm column was prepared 
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as previously described and packed under 4 lbs of pressure. The 500 mg 

of myoglobin was separated into four visible fractions by passing potassium 

phosphate buffer, pH 6.0, through the column at the rate of 1 ml per 

minute. When the fastest-moving fraction reached the lower part of the 

column, the whole column was pushed out in one piece by using 2-4 lbs 

pressure. The cellulose was then cut at the points of visible separation 

of the fractions. The myoglobin in each portion was eluted with potassium 

phosphate buffer, pH 6.8, Ool M NaCl. These samples were then dialyzed 

• extensively against deionized water and concentrated by lyophilization 

for electrophoresis. 

Treatment of dialvsis tubing 

Prior to use, dialysis tubing was boiled in 1 M sodium bicarbonate 

for approximately 2 hours. The tubing was then rinsed and boiled in 

deionized water until used. 

No difference in results was observed when dialysis tubing was not 

treated in the above manner. Consequently, this procedure was discon

tinued in later experiments. 

Isolation and purification of myoglobin 

Myoglobin was isolated by a modification of the method of Snyder and 

Ayres (1961). 

Ten pounds of freshly cut bovine round steak was trimmed of all visi

ble fat and ground. The ground meat was blended for 15-30 seconds in a 

Waring blendor with an equal volume of deionized water. The homogenate 

was then centrifuged at 10,000 rpm (12,000 x G) in a refrigerated centri

fuge for 15-20 minutes. The supernatant fluid was saved and the 
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extraction procedure repeated until the meat had lost all its red color. 

The pooled supernate was placed in dialysis tubing and concentrated to one-

half or one-third the original volume by pervaporation. 

After concentrating J the extract was heated to 55°C on a magnetic 

stirrer and cooled to room temperature. The precipitated heat-labile pro

teins were discarded after centrifugation. The pH of the supernatant 

fluid was adjusted to 6.5 with 5 N NaOH. The solution was then brought to 

15% saturation with ammonium sulfate. After standing overnight, the ex

tract was centrifuged and the precipitated protein was discarded. These 

steps were repeated bringing the solution to 85%, 90%, 95% and 100% satura

tion with ammonium sulfate. The extract was left at room temperature 

after reaching the 95% saturation point. Only the myoglobin that precipi

tated between 90 and 100% saturation with ammonium sulfate was used in 

these experiments. These fractions were free of contamination with 

hemoglobin. The amount of ammonium sulfate added at each step was calcu

lated from the nomogram in Dixon and Webb (1964, p. 40). 

Myoglobin isolated in this manner will be referred to throughout the 

text as purified myoglobin, or purified metmyoglobin. 

Calculation of the relative purity of myoglobin 

Ratios of the absorbancy at 409/280 nm were used as a rough estimate 

of the relative purity of metmyoglobin in the original sample and in the 

column fractions. 

Calculation of the concentration of myoglobin 

Absorbancy of cyanmetmyoglobin at 540 nm was used to determine the 

concentration of the heme protein, using an extinction coefficient of 
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11.3 1-cra ^-n-juoles 

Concentration of dilute protein solutions 

Myoglobin solutions were lyophilized after extensive dialysis against 

deionized water. No differences were found on either chromatography or 

electrophoresis between myoglobin chat was lyophilized and myoglobin ob

tained by ammonium sulfate fractionation without lyophilization. 

Some samples were concenrrared by means of a Diaflo syringe with 

IZ'I-2 membranes, made by the Amicon Corporation, 280 Binney Street, Cam

bridge, Massachusetts. These samples had a pH of 5.6 after being concen

trated. Ifhen used in electrophoresis, they were allowed to equilibrate to 

the desired pH, after placement on the gel, by circulating the buffer in 

the cell for 10-20 minutes before turning on the current. 

CH-Seohadex columns 

CM-Sephadex C-50 was used according to the directions of the manu

facturer . 

Polvacrvlamide gel electrophoresis 

Polyacrylamide gel electrophoresis was carried out by the vertical 

gel technique described by Raymond and Wang (1960), and Raymond and 

Nakamichi (1962). 

Polymerization of the gel, electrophoresis of the samples and destain-

ing of the gels were all done in apparatus of E-C Apparatus Company. The 

acrylamide monomer and the crosslinking agent, methylene-bis-acrylamide, 

were purchased pre-mixed in the ratio of 95 to 5 as Cyanogum-41 from E-C 

Apparatus Company. The mixture was dissolved in appropriate buffers in 
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amounts of 5 g, 7 g, 8 g or 10 g per 100 ml buffer. N,N,N',N'-Tetra-

methylethylenediamine (Eastman Organic Chemicals), one of two catalysts, 

was added at the rate of 0.2 ml per 100 ml gel solution. The mixture was 

then filtered in order to remove any insoluble materials. To initiate 

polymerization 0.2 g per 100 ml ammonium persulfate was added. The solu

tion gelled in the chamber cooled with tap water in about 15-20 minutes. 

Analytical gels were prepared with 150 ml of the appropriate buffer; 

preparative gels were prepared with 220 ml buffer. 

Buffers used were barbital, 0.0075 M, pH 8.6; tris (0,076 M)- citric 

acid (0.005 M) in the gel and sample with a pH of 8.6, and boric acid 

(0.3 X) - NaOH (0.05 M), pH 7.9, for the buffer circulating in the cell 

(discontinuous system of buffers, Poulik, 1957) with and without 10"^M 

EDTA; Poulik's discontinuous system of buffers with 0.01% w/v KCN added; 

Poulik's discontinuous system of buffers with 0.2 M 2-mercaptoethanol 

added (sp. gr. 1.1143 g/ml; Mol. Wt. 78.14 g/1; therefore, used 14.0 ml 

2-mercaptoethanol per liter); 0.005 M potassium phosphate buffer, pH 6.0, 

and pH 6.7; 0.005 M citrate buffer, pK 5.2; and 0.0065 M potassium phos

phate buffer pH 5.6; 0.1 M TEB buffer, pK 9.2 (40 g tris - 4 g EDTA -

1.52 g boric acid in 4 liters distilled water). 

Lyophilized myoglobin was dissolved in the appropriate buffer and 20% 

sucrose added after filtration, to increase the density of the sample. In 

order to keep the sample in a thin band, the preferred concentration of 

myoglobin for analytical gels was 0.3 - 0.4 mg in a total sample volume of 

0.01-0.02 ml. Samples were layered into the sample slot by means of a 

microsyringe. Myoglobin concentrations of 25-30 mg were used on prepara

tive gels. 
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Voltages ranged from 150 to 300 volts depending on the buffer used. 

So that the gel would not over-heat or warp, starting amperages of 120-130 

ma were not exceeded; the voltage was chosen accordingly. Length of time 

during which the current was applied varied from one to six hours. At the 

end of electrophoresis, at a constant voltage, the amperage dropped to 

50-70 ma. 

Staining of gels After electrophoresis, the gel slab was placed 

in a pyrex dish for staining. A modification of the method of Haut et al. 

(1962) was used for the benzidine stain which depends on the peroxidase 

activity of the heme group. The staining solution was freshly prepared 

each time before use. The following materials were combined and poured 

over the gel which was allowed to stain for 10-15 minutes: 50 ml methanol 

saturated with benzidine dihydrochloride, 10 mg sodium nitroferricyanide 

freshly dissolved in 50 ml distilled water, 10 ml glacial acetic acid and 

3 ml of 3% hydrogen peroxide. 

Ifnen duplicate samples were run, the gel slab was cut in half. One 

half was stained with the benzidine stain, the other half was placed in 

amido black dye solution for 20-30 minutes* The dye solution was made by 

dissolving 10 g Amido Black lOB (Hartman-Leddon Co.) in a solution contain

ing 500 ml methanol, 500 ml distilled water and 100 ml glacial acetic acid, 

letting it stand overnight and filtering before using. After removing 

from the staining solution the gel was rinsed well with tap water then 

destained by electrophoresis in a charcoal-filtered bath (E-C Apparatus 

Co.). The destaining solvent consisted of 2 liters methanol, 2 liters 

distilled water and 450 ml glacial acetic acid. After destaining, the 
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gels were wrapped in Saran Wrap (Dow) to prevent the loss of moisture. 

Photographs of gels were taken immediately after staining and 

destaining with a Polaroid Land Camera, Model ISO. The gels were placed 

on a film viewer (Laboratory Supplies Co., Inc.) which was covered with a 

heavy black paper in which an opening had been cut out the size of the gel. 

Blution of samples from preparative gels Myoglobin bands were 

eluted from preparative gels by two methods: 

a) Gel strips for each band were cut out and placed in a mortar. Five mis 

of 0.01 M potassium phosphate buffer, pH 5.5 was added to each strip. The 

gel was then mascerated manually with a pestle and let stand overnight in 

the refrigerator. The preparation was then filtered and the procedure 

repeated. Total recovery of myoglobin by this method was poor but the ex

tract was free of polyacrylamide gel, 

b) Attempts to elute with a tissue homogenizer were unsuccessful. The 

preparation became pasty and impossible to recover. A similar approach 

was used where the gel strips were repeatedly homogenized with buffer in a 

small blendor then filtered. Recovery of myoglobin was good but a con

siderable amount of polyacrylamide gel was found in the dialyzed, lyo-

philized extract. 

Two-dimensiona1 electrophoresis Two-dimensional gel electrophore

sis was performed in a manner similar to the technique described by Raymond 

and Aurell (1962) . The equipment was the same as above and the discon

tinuous buffer system of Poulik (1957) was used. The amount of myoglobin 

subjected to electrophoresis on a 5% polyacrylamide gel in the first 

dimension was varied between 0.4 and 0.8 mg. After separation in the first 
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dimension two whole samples were cut out in vertical strips 5-6 mm wide. 

One was stained, the other placed horizontally on a fresh 8% gel for elec

trophoresis in the second dimension, using the same system of buffers. 

In order to minimize diffusion, the gel strip was kept on ice until ready 

to be used. A preparative 8% gel (220 ml buffer) was used for electro

phoresis in the second dimension in order to accomodate the thickness of 

the gel strip with ease. A small slot-former, 1 cm in width, was used for 

electrophoresis in the first dimension, and a 10 cm wide slot-former was 

used for electrophoresis in the second dimension in order to accomodate 

the full length of the gel strip. 

Nomenclature: designation of fractions 

In the following presentation of results, the major CM-Cellulose 

fraction, i.e. the most positively charged component, will be referred to 

as Mb I according to the nomenclature used by Akeson and Theorell (1960) 

and Rumen (1959, 1960). The minor fractions will be referred to con

secutively as Mb II, Mb III etc., except for the first fraction to separ

ate on a column. This fraction, the least positively charged, will be 

designated the Fast-Moving Fraction (FMF) because it seems to differ from 

the others in its behavior. 

The major component on electrophoresis, which can be equated with CM-

Cellulose Mb I, will be designated e-1. The minor components will be 

designated e-2, e-3, e-4 in consecutive order from e-1. 
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RESULTS 

The microheterogeneity of myoglobin from various species has been 

demonstrated frequently by CM-Cellulose chromatography and electrophoresis. 

However, the number and proportion of fractions reported in the literature 

are not always consistent for any one species. Edmundson and Hirs (1962a) 

have shown a shift in elution pattern upon a slight change in pH. No 

explanation was offered. 

The data to be presented here will show that elution patterns from 

CM-Cellulose columns, and the size of fractions obtained, can be altered 

by raising or lowering the starting pH, as well as by varying the size cf 

a column and the amount of myoglobin used. A similar pH dependent change 

will be shown for electrophoretic patterns. 

The Non-Heme Component 

As previously cited, a non-heme fraction has been shown to precede 

myoglobin fractions from sperm whale, finback whale, horse and beef on CM-

Cellulose columns. This non-heme contaminant is present regardless of the 

method of isolation and purification of myoglobin. This observation led 

to the speculation that the non-heme component might be a contaminating 

protein which, by some protein-protein interaction, is responsible for the 

heterogeneity of myoglobin on chromatography. The idea was further nur

tured by the fact that this non-heme protein, though not demonstrable on 

electrophoresis of crystalline myoglobin, is demonstrable as an electro

phoretic component of the Fast-Moving Fraction (FMF) from a short (2.5 x 

5 cm) pH 6.0 CM-Cellulose column (See Fig. 1). The non-heme protein was 

more positively charged than the myoglobin components and, on 
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Fig. 1. CM-Cellulose chromatogram of bovine metmyoglobin. Approximately 
200 mg of purified metmyoglobin in 0.01 M potassium phosphate 
buffer, pH 6.0, was applied to the column, 2.5 x 5 cm bed dimen
sions. Estimated amount of myoglobin eluted in each fraction: 
FMF approximately 17%; Mb I, 33% 
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electrophoresis at pH 8.6, stayed close to the origin of the gel (i.e., the 

negative pole). 

The non-heme protein was not electrophoretically demonstrable in 

crystalline myoglobin by differential staining. However, it was ration

alized that, during chromatography, this protein pulled some myoglobin 

down the column with it and, consequently, formed a relatively large pro

portion of the first eluted fraction. Thus, on electrophoresis of the 

FMF, the non-heme component was seen as a separate band. 

Electrophoresis in barbital buffer at pH 8.6 showed that neither Mb I 

nor the FMF was homogeneous. Mb I consisted mostly of e-1 with some e-2 

and e-3, whereas the FMF consisted mostly of e-2 and e-3 with some e-1. 

Again, this was taken to indicate that a possible interaction of the non-

heme protein with myoglobin altered the charge on myoglobin and caused a 

change in the proportion of the components; i.e. the non-heme protein was 

thought to exert an effect on some of the myoglobin. 

Myoglobin was then isolated in the same manner described under 

"Methods" except that the pH was raised to 6.9 during the ammonium sulfate 

fractionation instead of being maintained at 6.3. Chromatography of this 

preparation yielded the same two fractions, Mb I and the FMF. However, 

electrophoresis of these fractions revealed that a different non-heme pro

tein was isolated in this instance. This non-heme protein was more nega

tively charged and, therefore, at pH 8.6, migrated toward the positive pole 

more rapidly than the myoglobin components. 

These experiments indicated that different contaminants were isolated 

with myoglobin depending on the procedure used in obtaining this protein. 

Furthermore, electrophoresis of the non-heme fraction showed it to be 
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heterogeneous. 

In order to study further the effect of the non-heme component on 

myoglobin, an attempt was made to separate the two completely by extending 

the columns. 

Fig. 2 shows the elution curve from a pH 5.9 CM-Cellulose column 

where a separation of the non-heme component was obtained. Extending the 

column not only separated the non-heme component but also resulted in the 

separation of three myoglobin fractions. 

Fig. 3 shows that none of these myoglobin fractions is electro-

phoretically homogeneous. The FMF (Fig. 3C) still shows three electro-

phoretic components, but the non-heme component was not seen on the control 

gel. 

The ratio of the absorbancy at 409/280 nm was used as a criterion of 

the purity of this FMF. It had a ratio of 3.2, indicating an incomplete 

separation of the non-heme component. Conceivably a sufficient amount of 

the non-heme component remained attached to the myoglobin and pulled some 

of it down the column, but not enough of it was left to be detected as an 

electrophoretic component in the FMF. This indicated a need for further 

purification. 

Another pH 6.0 column was prepared using a highly purified myoglobin 

preparation with an absorbancy ratio (409/280 nm) of 4.9 before chroma

tography. This myoglobin was obtained from an (NH^)2S0^ fractionation 

where only the fraction at 95-100% saturation was used. Under the same 

conditions, this preparation gave the same elution curves seen in Figs. 1 

and 2. The column length was therefore, increased to 2.5 x 60 cm in order 

to effect a better separation. 
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Fig. 2. CM-Cellulose chromatogram of bovine metmyoglobin. Approximately 280 mg of purified 
metmyoglobin in 0.01 M potassium phosphate buffer, pH 5.9, was applied to the column, 
2.5 X 17.5 cm, bed dimensions. Estimated amount of myoglobin eluted in each frac
tion: FMF approximately 4%; Mb II, 10%; Mb I, 86% 
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Fig. 3. Polyacrylamide gel electrophoresis of purified metmyoglobin, and 
fractions from a pH 5.9 CM-Cellulose column (2.5 x 17.5 cm), 
shown in Fig. 2. Electrophoresis of these samples was done in 
an 8% gel by the vertical gel technique, using Poulik's discon
tinuous system of buffers, pH 8.6. Origin of the gel is at 
the top; samples are migrating downward towards the positive 
pole. Electrophoretic bands, from top to bottom are e-1, e-2, 
e-3 and e-4. The samples are, from left to right: 
A = Mb I 
B = Mb II 
C = FMF 
D = Purified metmyoglobin 
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Fig. 4 shows that the non-heme component emerged far ahead of the 

myoglobin on this column and was present in a very low concentration. Yet, 

the myoglobin separated into four or five fractions. It now became evi

dent that the non-heme component could not be inducing the myoglobin 

fractions obtained from CM-Cellulose chromatography. However, it was also 

observed that the fractions from the column had a lower 409/280 nm ratio 

than the original sample. 

It also became apparent that myoglobin from a single species could be 

separated into 2-5 chromatographic fractions depending on the conditions 

used. The reason for this was not immediately obvious. The experimental 

data indicated that the myoglobin fractions were not due to the non-heme 

component. Consequently, further experiments were designed to determine 

which factors were responsible for these varied results in the chroma

tography of myoglobin. 

CM-Cellulose Chromatography 

Relationship of column capacity and pH to elution patterns 

Figs. 1, 2 and 4 all show elution curves of myoglobin chromatographed 

at a starting pH of 6.0. These columns differed only in size and the 

amount of myoglobin chromatographed. However, each column had a different 

elution pattern, differing primarily in the number and size of fractions 

elated. These columns indicated the importance of column capacity. 

A comparison of columns in Table 1 shows the relationship of column 

size, and amount of myoglobin chromatographed, to the size of the FKF. 

Columns A and B have approximately the same amount of myoglobin per cubic 

centimeter column bed. In both instances the FMF consisted of 4% of the 
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Fig. 4. CM-Cellulose chromatogram of purified metmyoglobin (the fraction obtained from an ammonium 
sulfate fractionation at 95-100% saturation). Approximately 300 mg metmyoglobin in 0.01 M 
potassium phosphate buffer, pH 6.0, was placed on the column, 2.5 x 60 cm bed dimensions. 
Estimated amount of myoglobin eluted in each fraction: Mb I, approximately 92.77»; MB II, 
5%; Mb III, 1.5%; Mb IV, 0.8% 
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Table 1. Relationship of equilibrating pH and column capacity to fractions eluted from CMC^ columns 

Equilibrating pH 
and column code 

column 
dimensions 

in cm 

column 
capacity in cc 

pi(r^h) 

mg MB 
chroma -
graphed 

mg Mb per 
cc CMC 

Total number 
fractions 

eluted 

Per cent 
Ft-IF 

(estimate) 

5 .9 A 1.5 X 23 40.7 125 3.1 3 47o 

5.9 B 2,5 X 17.5 85.9 280 3.3 3 4% 

6.0 G 2.5 X 60 295 300 1.0 4 or 5 None 

6.0 D 1.5 X 24.5 43.4 23 0.53 3 or more None 

6.8 E 1.5 X 25 44.3 22 0.49 2 7% 

6.0 F 2.5 X 5 24.6 250 10.2 2 24% 

6.0 G 2.5 X 5.5 27.0 206 7.7 2 17% 

5.5 H 2.5 X 18 88.4 437 4.9 4 0.5% : 

5.5 I 2.5 X 17 83.5 704 8.4 4 0.3% 

6.0 J 2.5 X 8 39.3 252 6 .4 2 8% 

6.0 K 2.5 X 8 39.3 174 4.4 2 2% 

®CMC refers to Carboxymethyl Cellulose. 
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total myoglobin eluted. Columns A and D are similar in size; however, a 

much smaller amount of myoglobin was chromatographed on D than on A (mg 

îlb/cc column bed). Consequently, the on column D equilibrated with 

the column instead of being eluted, whereas column A had a FMF consisting 

of 4% of the total myoglobin eluted. Columns F and G, and J and K, in 

each instance show that the column on which more myoglobin was chromato

graphed had the larger FMP. 

Table 1 also shows that there are two exceptions where column capacity 

was not the main factor in determining the size of the FMF (compare 

columns H and I to B, and column D to E). In each instance the column of 

the higher pH had the larger FiylF. 

Fig. 5 shows the elution.pattern of a column with a starting pH of 

5.5. This elution curve differs in two ways from the pH 6.0 column shown 

in Fig. 2 and comparable in size. A very small FMF was eluted at pH 5.5, 

consisting of approximately 0.5% of the total protein eluted; the FMF from 

a pH 5.0 column of similar dimensions was approximately 4% of the total 

protein eluted. The lower starting pH seemed to shift the elution curve 

toward a higher percentage of more positively charged myoglobin, i.e. a 

larger amount of Mb I. Furthermore, chromatography at pK 5.5 resulted in 

the elution of four fractions. 

Equilibration of the fast-moving; fraction 

It was observed that Quinn, Pearson, and Brunner (1964) obtained an 

elution curve at pH 6.9 which resembled most the curve at pH 6.0 shorn in 

Fig. 1, though they used a much larger column for approximately the same 

amount of myoglobin. This, and the previously cited data, indicated that 
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Fig. 5. CM-Cellulose chromatogram of bovine metmyoglobin. Approximately 437 mg purified myo
globin in 0.01 M potassium phosphate buffer, pH 5.5, was applied to the column, 2.5 x 18 
cm bed dimensions. Estimated amount of myoglobin eluted in each fraction: Mb I, 
approximately 94%; Mb II, 4.5%; Mb III, 1%; FMF, 0.5% 
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the equilibrating pH has as great an effect on the elution pattern as does 

column capacity. 

To prove this point, two identical columns 1.5 x 25 cm were each 

equilibrated at a different pH and 22-23 mg of myoglobin was chromato-

graphed on each. Figs. 6 and 7 show the elution curves for these columns. 

At pH 6.0 (Fig. 6) this small amount of myoglobin gave the same type of 

elution pattern seen in Fig. 4 where 300 mg of myoglobin was chromato-

graphed on a 2.5 x 60 cm column. On both columns a FMF started out as a 

distinct band moving down the column far ahead of the rest of the myo

globin. When this FMF had migrated about half-way down the column, it be

came visibly less and less concentrated and seemed to be equilibrating 

with the column material. Finally, this FMF disappeared completely in

stead of emerging at an early point in the elution curve as would have 

been expected from its initial mobility. This altered the elution pattern 

considerably from those shown in Figs. 1 and 2. In the latter columns the 

FMF was eluted rapidly with little or no visible equilibration of the 

protein with the column material. Fig. 8 is a series of four photographs 

showing the formation of the fast-moving band and its eventual equilibra

tion with the column material within the first half hour of starting the 

elution. 

At pH 6.8 (Fig. 7), an identical column to the pH 6.0 column just 

described, the same amount of myoglobin separated into two bands when 

first placed on the column bed. Both bands migrated down the column at 

the same rate and were eluted in the sequence expected from their initial 

mobilities. Fig. 7 shows .that a fairly large (7%) FMF was eluted at pH 

6.8 but not at pH 6.0 (Fig. 6), The migration of the two bands on the 
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Fig. 6. CM-Cellulose chromatogram of bovine metmyoglobin. Approximately 
23 mg of purified myoglobin in 0.01 M potassium phosphate buffer, 
pH 6.0, was placed on the column, 1.5 x 25 cm bed dimensions. 
Estimated amount of myoglobin eluted in each fraction: Mb I, 
approximately 92.5%; Mb II, 5%; Mb III, 2.5% 

Fig. 7. CM-Cellulose chromatogram of bovine metnyoglobin. Approximately 
22 mg of purified myoglobin in 0.01 M potassium phosphate buffer, 
pH 6.8, was placed on the column, 1.5 x 25 cm bed dimensions. 
Estimated amount of myoglobin eluted in each fraction: Mb I, 
approximately 93%; FMF, 7% 
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Fig. 8. Series of 4 photographs shown in sequence from left to right, 
top to bottom of page, showing the process of equilibration of 
the FMF with the column material, and its eventual disappear-

. ance as a discreet fraction. These photographs were taken 
from the pH 6.0 column shown in Fig. 6 
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pH ô.S colunm, and their elution in the same sequence, is shown in three 

photographs in Fig. 9. 

The relationship of colunui size, and amount of myoglobin chromato-

graphed, to the size of the FKF was not entirely surprising. This could 

be explained on the basis of column capacity; i.e. the need for a minimum 

number of exchange groups to effect the complete separation of a given 

amount of protein on a column. An explanation for the pH-dependent 

change in size of the was not as readily available. 

Change in pH of effluent from columns 

As the FKF was eluted (Figs. 1, 2 ,  5 )  a concomittant rise in pH was 

observed. This rapid rise and decline in pH seemed to take place before 

the pH gradient on the column took effect. An attempt was made to corre

late the change in hydrogen ion concentration to the amount of myoglobin 

eluted in the F>1F. There seemed to be no correlation between the two. 

Because the myoglobin was equilibrated with the starting buffer, the possi

bility was eliminated that the rise in pH was due to poor buffering 

capacity for the amount of protein involved. 

A CM-Sephadex column was run at pH 6.0 (Fig- 10) to see if the same 

elution pattern could be obtained with a column material other than CM-

Cellulose. The elution curve obtained with CM-Sephadex at pH 6.0 (Fig. 

10) differed markedly from the elution curve of a similar pH 6.0 CM-

Cellulose column (Fig. 2), eluted under the same experimental conditions. 

In facL, the elution curve of the CM-Sephadex column at pH 6.0 resembled 

most the elution curve of a CM-Cellulose column at pH 5.5 (Fig. 5). 

Samples for all three columns (Figs. 3, 5, 10) were prepared in the 
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Fig. 9. Series of 3 photographs shown in sequence from left to right, 
top to bottom of the page, showing the elution of the FMF and 
Mb I from a pH 6.8 column. These photographs were taken from 
a pH 6.8 column of the type shown in Fig, 7 
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Fig. 10. Chromatogram from CM-Sephadex column equilibrated at pH 6.0. Approximately 155 mg 
purified myoglobin was placed on the column, 1.5 x 23 cm bed dimensions. Estimated 
amoung of myoglobin eluted in each fraction: Mb I, approximately 78.8%; Mb II, 
13.7%; Mb III, 5%; FMF, 2.5% 
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same way but the elution curves still differed. Therefore, it seemed 

likely that there might be an interaction between the eluting buffer and 

the charged exchange groups on the column material. In order to examine 

this possibility, two CM-Cellulose columns were run without myoglobin. 

One column was equilibrated at pH 5.6, the other at pH 6.0. In each in

stance the same buffer gradient was passed through the column as when 

eluting myoglobin. The effluent was collected in the same manner as frac

tions from a regular .column and the pH was then measured on each fraction 

collected. 

Figs. 11 and 12 show the pK curves obtained for these two columns. 

Comparing these pH curves to myoglobin elution curves from similar columns, 

Figs. 2 and 5, it becomes evident that the fast-moving myoglobin fraction, 

in each instance, is eluted in the region of the pH curve where little , 

change in pH is detected in the effluent, i.e. in the first 180 mis at 

pH 6.0 and the first 240 mis at pH 5.6. The pH of the gradient buffer 

mixture was checked after 280 mis had passed through the pH 5.6 column, 

just where the curve changed abruptly. The buffer mixture entering the 

column, at this point, had a pH of 6.7 but the effluent leaving the column 

had a pH of 5.6. The change in slope of the pH 5.6 curve occurs at 280 

mis and is much more abrupt than the change in the pH 6.0 curve which 

occurs at 180 mis. The change in slope of these pH curves is followed by 

a fairly linear rise in pH from 6.6 on. 

In order to maintain the pH of the effluent at the equilibrating pH 

after the gradient is started, the column material or the exchange groups 

have to contribute the needed hydrogen ion to the buffer gradient as the 

pH of the buffer mixture rises. This indicates some interaction between 
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Fig. 11. pH curve obtained from CM~Cellulose column, 2.5 x 18 cm, and equilibrated with 0.01 M 
potassium phosphate buffer, pH 5.6. The buffer gradient was formed and passed 
through the column as described under Methods, except that no myoglobin was placed 
on the column bed 
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Fig. 12. pH curve obtained from a CM-Cellulose column, 2.5 x 18 cm, and equilibrated with 0.01 M 
potassium phosphate buffer, pH 6.0. The buffer gradient was formed and passed through 
the column as described under Methods, except that no myoglobin was placed on the 
column bed 
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the column material and the buffer. 

The same abrupt change in pH was observed on the pH 5.9 and 5.5 

columns where myoglobin had been chromatographed (Figs. 2 and 5). This 

abrupt change in pH occurs at the same volume as on the pH curves, and is 

of the same magnitude. However, Figs. 2 and 5 show that elution of the FMF 

is accompanied by a rise in pH that is not related to the above phenomenon, 

and which occurs in the region equivalent to that on the pH curves where 

no change in pH is observed; namely, between 150 and 170 mis on the pH 5.5 

column (Fig. 5), and 90-120 mis on the pH 5.9 column (Fig. 2). Apparently 

the change in pll that seems to accompany the elution of the FMF is not 

necessarily due to an interaction of the column material and the buffer., 

but might be due to the interaction of the protein and the column material. 

Reasons for the elution pattern obtained on CM-Sephadex are not clear and 

may have to do with column capacity. However, the problem was not pursued 

further. 

The rise in pH accompanying elution of the FMF is not as marked on 

CM-Gellulose columns with increased .capacity (see Figs. 4, 6, 7). Figs. 

13, 14 and 15, presented in the next section, indicate that a fairly 

linear pH gradient is obtained upon rechromatography of the FMF, and the 

pooled Mb I and II fractions; and the initial rise in pH is small. In 

these instances, too, a small amount of protein was placed on the column. 

Clayton and Bushuk (1966) showed a similar variability in pH on CM-

Cellulose columns. They showed a greater variability in pH with decreas

ing buffering capacity of the eluant. They also showed that, with decreas

ing buffering capacity, a higher ionic strength is required to elute a 

given protein. 
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Clayton and Bushuk (1966) suggested that the adsorption process on 

CM-Cellulose involves displacement of sodium ions from the cellulose by 

positively charged basic groups on the protein. They suggest that this 

might cause a slight rise in pH since sodium ions are more basic than any 

basic protein groups. Also, they suggest that the reverse occurs when 

sodium ions in solution displace relatively weak basic positively charged 

protein groups from the cellulose. 

The same reasoning might apply to the observed rise in pH that seems 

to occur when the FMJ? is eluted. Further support for the idea of the dis

placement of more basic ions by less basic ions lies in the fact that the 

magnitude of the pH change is not as great when less protein is placed on 

the column. Furthermore, a slight rise in pH is observed even when no FMF 

is eluted (see Figs. 4 and 6), indicating that the change in pK occurs as 

the myoglobin is placed on the column, and not as it is eluted. 

The rise in pH of the eluant may cause some of the protein to become 

more negatively charged. This, in turn, would account for the rapid 

elution of the FMF at high pH's where the protein is also more negatively 

charged to begin with. At pH 5.5 the protein is more positively charged 

than at pH 6.0, so that, despite the change in pH, less myoglobin is 

eluted as a FMF. 

However, the elution of a FMF, or its re-equilibration with the 

column material under certain conditions, may not be related to the ob

served rise in pH. Instead-, it is possible that there is an initial 

change in ionic strength as myoglobin displaces potassium ions on the ex

changer. Such an increase in ionic- strength would cause some of the myo

globin to move down the column rapidly. However, if the column is long 
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enough (Fig. 4), the potassium ions are diluted out and the myoglobin is 

retained on the column gradually. In the same way, a short column with 

very little myoglobin on it (Fig. 6) would permit equilibration of the FMF 

by virtue of the fact that fewer potassium ions would have been displaced; 

consequently these ions are still diluted out even though the column is 

short. 

There is no strong evidence to indicate whether the equilibration of 

the FMF is due to a change in ionic strength or whether it is in some way 

related to the observed changes in pH, It is conceivable that neither of 

these factors is involved in the ultimate explanation of this phenomenon. 

The possibility of artifactual fractions due to inadequate pH control 

can be eliminated on the basis of evidence to be presented later; namely, 

electrophoretic heterogeneity of all column fractions, and heterogeneity 

of the FMF on rechromatography, even when a fairly linear pH gradient is 

obtained. 

Rechromatography of the fast-moving fraction 

In an effort to further purify the FMF eluted from a column of the 

type shown in Fig. 1, the pooled fraction was re-equilibrated against 0.01 

M potassium phosphate buffer and rechromatographed under the same condi

tions. The elution curve obtained on rechromatography is shown in Fig. 13. 

Instead of obtaining a single peak, as might be expected from a homogene

ous fraction, the FMF was converted into the three components seen in Fig. 

2. The elution curve in Fig. 13 indicates that most of the myoglobin in 

the FMF (about 95% of it) was converted into Mb I and II, the most posi

tively charged myoglobin components. In fact, rechromatography of the FMF 
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Fig. 13. Chromatogram of the rechromatography of the FMF at pH 6.0 on a 
CM-Cellulose column 2.5 x 5 cm (24.5 cc). This resulted in the 
conversion of approximately 95% of the protein into Mb I and II 

Fig. 14. Chromatogram of the rechromatography of the FMF from Fig. 13. 
A CM-Cellulose column 0.8 x 7.5 (3.8 cc), pH 6,0 was used. 
Rechromatography resulted in the conversion of approximately 
92% of the FMF into Mb I and II 
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resulted in the same elation pattern obtained for purified metmyoglobin. 

The FMF from rechromatography, i.e. the FMF from Fig. 13, was again 

re-equilibrated and rechromatographed. Due to the low concentration of 

protein a small column (0.8 x 7.5 cm) was used. This changed the point 

of emergence of the fractions. However, Fig. 14 shows that, once more, 

about 92% of the FMF was converted predominantly into Mb I and Mb II-

Mb I and II from the rechromatographed FMF in Fig. 13 were pooled and 

rechromatographed. The elution curve for these fractions (Fig. 15) shows 

that there is a very slight conversion if any, to the FMF. However, the 

more positive components still predominate at pH 6.0. 

This recurring but consistent change in the proportions of fractions 

obtained from rechromatography of the FMF indicated a possible conversion 

of this component into all the others on CM-Cellulose columns. Rechroma

tography of Mb I and II indicates that these components are not as much 

subject to such changes. 

These results indicated that the FMF consisted either of a mixture of 

all myoglobin components to begin with, or that the FMF underwent a change 

during chromatography that resulted in this mixture. 

Further evidence for changes in CM-Cellulose fractions is presented 

in the section on electrophoresis. 

The 409/280 nm ratios of the rechromatographed fractions were lower 

than the ratios of the original sample. This indicated the possibility of 

a low 409 nm, or a high 280 nm reading due to a conformational change in 

the protein upon dilution. This point was checked by taking difference 

spectra at both wavelengths. Purified myoglobin was placed in a 0.2 cm 

cell, and a 5 cm cell with buffer was lined up behind it in the cell-
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Fig. 15. Chromatogram of the rechromatography of the pooled fractions, 
Mb I and II, from Figure 13. Chromatography was carried out at 
pH 6.0 on a CM-Cellulose column 2.5 x 4.5 cm (22.6 cc) 
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holder for the Beckman DK-2A recording spectrophotometer. Next to these 

were lined up a 0.2 cm cell containing buffer behind which was placed a 5 

cm cell containing a 1:25 dilution of the same myoglobin sample. Differ

ence spectra recorded at both wavelengths showed no dilution effect. 

Dilution of the protein apparently was not the reason for obtaining 

the low 409/280 nm ratios on rechromatography. The low ratios might be 

due to a high 280 nm reading caused by some light-scattering material 

picked up from the column. The problem was not pursued further. 

Polyacrylamide Gel Vertical Electrophoresis 

Fig. 16 D (identical to Fig. 3 D) shows the electrophoretic pattern 

of myoglobin purified by ammonium sulfate fractionation. Fig. 16 A, B, 

C (identical to Fig. 3 A, B, C) are the electrophoretic patterns obtained 

from Mb Ij II, and the FtlF from a pH 6.0 CM-Cellulose column, 2.5 x 17.5 

cm (Fig. 2). The discontinuous system of buffers (Poulik, 1957) was used; 

pH of the gel and sample was 8.6, the circulating buffer had a pH of 7.9. 

As can be seen, none of these fractions was homogeneous. 

At this high pH, on the alkaline side of the isoelectric point of 

myoglobin, purified metmyoglobin (Fig. 16 D) was resolved into four electro

phoretic components, e-1, e-2, e-3 and e-4 in order of decreasing concen

tration. Occasionally, a fifth and sometimes a sixth, electrophoretic 

component could be seen. 

CM-Cellulose I'lb I (Fig. 16 A), the major chromatographic component, 

was resolved into three electrophoretic components, e-1, e-2 and some e-3, 

with e-1, the most positively charged component, predominating. The fourth 

component seen in purified myoglobin, e-4, was either missing or present 
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Fig. 16. Polyaerylamide gel elec
trophoresis of purified 
myoglobin from a pH 5.9 
CM-Cellulose column (2.5 
X 17.5 cm). Electro
phoresis of these sam
ples was done in an 8% 
gel by the vertical gel 
technique, using Poulik's 
discontinuous system of 
buffers (pH 8.6). Origin 
of the gel is at the top; 
samples are migrating 
downward towards the 
positive pole. Samples 
are, from left to right; 
A = Mb I 
B = Mb II 
C = EMF 
D = Purified MetMb 

Fig. 17. Polyacrylamide gel elec
trophoresis carried out 
under the same conditions 
described in Fig. 16. 
The samples are, from 
left to right: 
A = purified metMb 
B = FMF from pH 5.5 

column (Fig. 5) 
C = Mb III from pH 5.5 

column (Fig. 5) 
D = Mb II from pH 5.5 

column (Fig. 5) 
E = Mb I from pH 5.5 

column (Fig. 5) 
F = Mb I from pH 6.0 

column (2.5 x 5 cm) 
G = FMF from pH 6.0 

column (2.5 x 5 cm) 
H = Purified metMb 

Fig. 18. Polyacrylamide gel elec
trophoresis carried out 
as in Fig. 16. The sam
ples are, from left to 
right : 
A = Mb II from pH 6.0 

column (Fig. 6) 
B = FMF from pH 6.8 

column (Fig. 7) 
C = Mb I from pH 6.8 

column (Fig. 7) 
D = Mb I from pH 6.0 

column (Fig. 6) 
E = Mb I from pH 6.0 

column (Fig. 4) 
F = Purified metMb 

Fig. 19. Polyacrylamide gel elec
trophoresis carried out 
as in Fig. 16 except that 
EDTA was added to all 
buffers. Samples are, 
from left to right: 
A = Mb I from pH 5.5 

column (Fig. 5) 
B = Mb II from pH 5.5 

column (Fig. 5) 
C = purified metMb held 

for one month or 
more in solution 

D = Purified metMb 
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in too low a concentration to be detected. Mb II (Fig. 16 B) consisted of 

the same three electrophoretic components as Mb I but had a little less e-1 

and more e-2 and e-3 than, Mb I. By contrast, the IMF (Fig. 16 C) con

sisted of very little e-1, more e-2 and e-3, and 3-4 which streaked far 

ahead of the e-4 component in purified myoglobin. This streaking, or lack 

of a discreet e-4 band, was also seen in the electrophoresis of the FMF in 

barbital buffer, pH 8.6. This CM-Cellulose fraction (FMF) consistently con

tained some myoglobin with a greater negative charge at a high pH than the 

e-4 component of the purified protein. Streaking was also seen in Mb II 

(Fig. 16 B) though to a lesser extent than in the FMF. 

Similar streaking was observed on electrophoresis at pH's above 8.0 

of the FMF obtained from columns equilibrated at different pH values (Fig. 

17 B, C, G and Fig. 18 B), namely, pH 5.5, short (2.5 x 5 cm) pH 6.0, and 

pH 6.8 columns. When barbital buffer, pH 8.6 was used, one less electro

phoretic component was observed in purified myoglobin and CM-Cellulose 

fractions than with the discontinuous system of buffers. However, the 

same relative proportions of slow to fast electrophoretic components were 

observed with both buffers. 

A comparison of Fig. 16 C with Fig. 17 G further reveals that the FMF 

from a short (2.5 x 5 cm) pH 6.0 column contains more e-1 than the FMF from 

a longer (2.5 x 18 cm) pH 6.0 column. This was interpreted as additional 

confirmation that a better separation is obtained on columns of greater 

capacity, with a consequent elution of a smaller FMF containing less e-1. 

However, the heterogeneity of CM-Cellulose fractions is evidently not due 

to inadequate column capacity. The 2.5 x 60 cm column (Fig. 4) was not 

over-loaded by any standards; neither was the 1.5 x 25 cm, pH 6.0, column 
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shown in Fig. 6. Yet, unexpectedly, the major fraction from each of these 

columns was heterogeneous on electrophoresis (Fig. 18 E and D). 

Heterogeneity and metal-binding 

The possibility that some of the fractions might be caused by the 

presence of metals was investigated. EDTA, 10"^ M, had no effect on the 

number of CM-Cellulose fractions eluted. On electrophoresis at a given pH, 

with and without EDTA in the buffers, the same electrophoretic components 

were obtained for purified myoglobin and fractions from CM-Cellulose 

columns (compare Fig. 17 D, E and H with Fig. 19 B, A and D). 

Fig. 19 C and D both show electrophoretic patterns of purified myo

globin. Sample D was freshly prepared just prior to electrophoresis; 

sample C had been standing in solution for a month or more. The same 

electrophoretic components were obtained with both samples, indicating the 

stability of the electrophoretic components at a given pH. 

Heterogeneity versus homogeneity with 2-mercaptoethanol 

Wolfson et al. (1957) claimed to reduce the multiple bands in human 

myoglobin to one component by using 2-mercaptoethanol in the agar gel on 

electrophoresis. In view of this unexpected finding an attempt was made 

to reproduce these results. 

When 2-mercaptoethanol was used in preparing the gel, the acrylamide 

did not polymerize. Apparently the 2-mercaptoethanol, acting as a reducing 

agent, was interfering with the catalytic action of ammonium per sulfate in 

initiating the polymerization of the acrylamide. Electrophoresis was then 

performed under a hood by using 2-mercaptoethanol in the sample and circu

lating buffer but not in the gel. 
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Addition of 2-mercaptoethanol to metniyoglobin changed the typical met 

color to a deep red. Spectrophotonietric analysis in the visible range 

(700 to 450 nm) revealed that the sample consisted mostly of oxymyoglobin 

but still had some metmyoglobin in it. Apparently 2-mercaptoethanol re

duced the iron in the heme. Electrophoresis of this mixture showed a very 

small band of metmyoglobin moving much faster than the oxymyoglobin toward 

the positive pole. The red oxymyoglobin was seen to separate into the 

same components normally seen with metmyoglobin in the absence of 2-

mercaptoethanol. 

However, upon staining with rhe benzidine stain, some minor bands, 

though initially visible without szaining, ̂ adually disappeared. Re

peated changing of the staining material had no effect on the staining of 

the minor components. Only the major band remained visible. Apparently 

the 2-mercaptoethanol was interfering in some way with the staining pro

cedure but was not eliminating the microheterogeneity of myoglobin as 

suggested by Wolfson et al. (1967). It was noted that these investigators 

used the benzidine stain to show the elimination of all but one electro-

phoretic band in myoglobin by 2-mercaptoethanol. 

Heterogeneity of cyanmetmyoglobin 

Perkoff (1962), working with human myoglobin, had suggested that, at 

high pH's on DEAE-Cellulose, some myoglobin fractions are due to the acid-

alkaline froms of the protein. Quinn and Pearson (1964) agreed with 

Perkoff. They found that some of the fractions ôï bovine myoglobin are 

eliminated on DEAE-Cellulose coluirais when cyanmetmyoglobin is used. How

ever, Atassi (1964) obtained more fractions on CM-Cellulose than any other 
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investigator when he used the cyanide derivative of sperm whale metmyo-

globin. 

Fig. 20 D shows the same four electrophoretic components in the 

cyanide derivative of purified bovine myoglobin as were seen in Figs. 16 D, 

17 H, 18F and 19 D for purified myoglobin. The cyanide derivatives of Mb 

I, II and III from a pH 5.5 column (Fig. 20 A, B, C) also show the same 

electrophoretic components as Mb I, II and III in the metmyoglobin form 

(Fig. 17 C, D, E). These results agree with the findings of Hardman et al. 

(1966) for sperm whale myoglobin. In neither instance was there evidence 

to support Perkoff's contention that all or some of the microheterogeneity 

of myoglobin was due to the separation of the acid-alkaline forms of the 

protein. 

Heterogeneity and the equilibration of the fast-moving fraction 

The FMF on CM-Cellulose columns has been shown to equilibrate with 

the column material under certain conditions (see the section on chroma

tography) . On electrophoresis at pH 8.6 none of the CM-Cellulose frac

tions was found homogeneous. These two observations led to the specula

tion that the contamination of each fraction with the other migh.t be 

occurring on the column due to the equilibration of the FMF with the 

column material. If the FMF is an artifact caused by poor initial adsorb-

tion of some of the protein due to an increase in ionic strength, it would 

be expected to contain a mixture of all the myoglobin components. After 

the FMF equilibrates with the column material, Mb I and II could, con

ceivably, become contaminated with some components from the FMF as they 

move down the column and pass over the area where it had re-adsorbed on 
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Fig. 20. Polyacrylamide gel elec
trophoresis of cyanmetmyo-
globin in Poulik's discon
tinuous system of buffers 
(pH 8.6) with 0.01% KCN 
added. Origin of 5% gel 
is at top, samples are 
migrating downward toward 
the positive pole. Sam
ples are, from left to 
right: 
A = Mb I from pH 5.5 

column (Fig. 5) 
B = Mb II from pH 5.5 

column (Fig. 5) 
C = Mb III from pH 5.5 

column (Fig. 5) 
D = Purified metMb 

Fig. 21. Polyacrylamide gel elec
trophoresis of myoglobin 
separated on a 2.5 x 22 
cm column, pH 6.0, but 
not eluted. A 5°L gel 
and Poulik's discontin
uous system of buffers, 
pH 8.6, were used. 
Origin of gel is at the 
top; samples are migrat
ing downward towards 
the positive pole. Sam
ples are from left to 
right : 
A = Purified metMb 
B = Mb I 

C = Section from column 
between Mb I and II 

D = Mb II 
E = Section from column 

between Mb II and III 
F = Mb III 
G = FMF 

H = Purified metMb 

Fig. 22. Polyacrylamide gel re-
electrophoresis of 
myoglobin e-1 eluted 
from a 5% gel. Re-
electrophoresis was 
carried out under the 
same conditions, using 
Poulik's discontinuous 
system of buffers 
(pH 8.6). Origin of 
the gel is at the top, 
samples are migrating 
downward towards the 
positive pole. Samples 
are, from left to right: 
A = Purified metMb 
B = Re-electrophoresis of 

major electrophoretic 
band, e-1 
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the cellulose. The following experiment was designed to check the possi

bility of such overlapping of fractions during the elution. 

About 500 mg myoglobin was placed on a column that was packed under 

2-4 lbs pressure (final bed dimensions 2.5 x 22 cm). Conditions that re

sult in the elution of a FMF were chosen. Potassium phosphate buffer at 

the equilibrating pH of 6.0 was passed over the column at a rate of 1 ml 

per minute. Myoglobin separated into four visible fractions on the 

column. When the FMF was within two inches of the bottom of the column, 

the whole column bed was pushed out in one piece by applying about 4 lbs 

pressure. The cellulose was sectioned off at the visible dividing lines 

of the fractions. It was observed that the inside column material at 

each division contained more myoglobin than the outer portion. These 

"overlapping" portions were cut off and treated as separate entities. 

Each section of the column was then eluted with pH 6.8 potassium 

phosphate buffer-0.1 M NaCl. The filtrate was then dialyzed and lyo-

philized. Figs. 21 B and D show that Mb I and II from the column are 

still heterogeneous on electrophoresis though neither had migrated from 

its original position on the column. Each contained predominantly e-1, 

less e-2 and a trace of e-3. The FMF (Fig. 21 G) had the same electro-

phoretic components and in the same proportions observed previously for 

the eluted fraction. 

These results indicated that contamination of Mb I and II with the 

other fractions does not result from the equilibration of the FMF on the 

column. However, only 3 fractions were eluted, though 4 fractions were 

visible on the column. It is, therefore, possible that intermediate 

fractions are contaminated one with the other due to equilibration of some 
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of the protein on the column. However, since Mb I did not move from its 

original position on the column but was still heterogeneous on electro

phoresis, it seems likely that all myoglobin fractions from a column con

tain a mixture of the electrophoretic components which cannot be separated 

chromatographically. 

Heterogeneity on re-electrophoresis at high pH's 

To check the homogeneity of myoglobin on electrophoresis, component 

e-1 from two preparative gels, pH 8.6, was eluted with deionized water and 

lyophilized. Re-electrophoresis of e-1 on an analytical gel at the same 

pH showed that this band is not homogeneous (Fig. 22 B). It contained 

equal amounts of e-1, e-2, e-3. If e-4 was present it streaked ahead of 

the other components. 

Because 30-40 mg had been used on the preparative run, it seemed 

possible that an imcomplete separation had been obtained. However, an 

incomplete separation would have resulted in more e-1 and less of the 

minor components. Since equal amounts of e-1, e-2 and e-3 were obtained 

on re-electrophoresis, it looked as though some of e-1 had been converted 

to the more negative components. This suggested a change in relative 

proportions, favoring the negative components at a high pH. 

Two-dimensiona1 electrophoresis at low and high pH's 

Purified metmyoglobin was separated on electrophoresis using a 5% gel 

and the discontinuous buffer system of Poulik (1957). After separation of 

the sample into four components, a 5-6 mm wide strip was cut vertically. 

This 8-9 cm long gel strip was turned 90° and placed horizontally in a new 

8% gel. The same buffer was used for electrophoresis in the second 
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dimension. 

Fig. 23 shows that e-1 separated again into e-1, e-2 and e-3, though 

e-3 is not clearly visible in the photograph. If present, e-4 would be 

in too low a concentration to be detected by the staining technique. All 

four components in the original sample migrated diagonally in the second 

dimension, maintaining their same relative mobilities. This indicates 

that these components are not caused by aggregation of the protein. Due 

to their low concentration it is not apparent whether e-2, e-3 and e-4 

were each converted into the other components during electrophoresis in 

the second dimension. However, this experiment did demonstrate that e-1 

reverts to the original electrophoretic pattern of purified metmyoglobin 

at pH 8.6; i.e. the more negatively charged components were formed from 

the more positively charged e-1. 

Fig. 24 shows the two-dimensional electrophoresis of purified metmyo

globin at pH 6.0. The major component, e-1, is again seen to revert to 

the original electrophoretic pattern of purified myoglobin at pH 6.0 

(Fig. 25 A). 

Electrophoresis at low pH's 

The samples used for electrophoresis at a high pH (Fig. 16) are simi

lar to those shown for electrophoresis at pH 6.0 (Fig. 25) and pH 5.2 

(Fig. 26). Comparing purified metmyoglobin at pH 5.2 (Fig. 26 D), pH 6.0 

(Fig. 25 A) and pH 8.6 (Fig. 16 D), it becomes evident that more of the 

minor components are formed at the high pH. At pH 6.0, e-1 and e-2 are 

seen, but e-3 is present in only trace amounts. At pH 5.2 only e-1 is a 

discrete component; e-2 is even less of a discreet band than at pH 6.0, 
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Fig, 23. Two-dimensional electrophoresis at pH 8.6 in polyacrylamide 
gels. A 5% gel was used in the first dimension, an 8% gel 
in the second dimension. Both dimensions were carried out 
in Poulik's discontinuous system of buffers. Origin of the 
gel is at the top, the sample is migrating downward towards 
the positive pole 

Fig. 24. Two-dimensional polyacrylamide gel electrophoresis in potassium 
phosphate buffer, pH 6.0. A 5% gel was used in the first dimen
sion, an 8% gel in the second dimension." Origin of the gel is 
the top, the sample is migrating downward towards the negative 
pole 
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Fig. 25. Polyaerylamide gel electrophoresis in potassium phosphate 
buffer, pH 6,0. Origin of the 5% gel is at the top, samples 
are migrating downward towards the negative pole. Samples are, 
from left to right: 
A = Purified metMb 
B = FMF from a pH 6.0 column of the type shown in Fig. 2 
C = Mb II from a pH 6.0 column of the type shown in Fig. 2 
D = Mb I from a pH 6.0 column of the type shown in Fig. 2 

Fig. 26. Polyacrylamide gel electrophoresis in sodium citrate buffer, 
pH 5.2. Origin of the 5% gel is at the top, samples are mi
grating downward towards the negative pole. Samples are, 
from left to right; 
A = FMF from a pH 6.0 column of the type shown in Fig. 2 
B = Mb II from a pH 6.0 column of the type shown in Fig. 2 
C = Mb I from a pH 6.0 column of the type shown in Fig. 2 
D = Purified metMb 
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and e-3 and e-4 are not scon as bands, rit the high pH all four components 

are seen as well defined bands. The three fractions from a pH 5.9 column 

(Fig. 2), show similar pH-dcpendent shifts in concentration on electro

phoresis. Specifically J Mb II, on electrophoresis at pH 5.2 (Fig. 26 B) 

and 6.0 (Fig. 25 C) contains distinctly more e-2 and less e-1 than the 

same fraction on pH 8.6 electrophoresis (Fig. 16 B), 

Furthermore, on electrophoresis at pH 6.0 much of the FMF from CM-

Cellulose columns ascended to the positive pole instead of migrating down

ward to the negative pole. This myoglobin was, apparently, still negative

ly charged at pH 6.0 and was lost in the circulating buffer. This indi

cated that one or more components in the FMF has an isoelectric point be

low pH 6.0. This was not observed on electrophoresis at pH 5.2, 

A considerable difference in size of the FMF was shorn on CM-

Cellulose chromatography at pH 5.5 and 6.0. Conceivably at pH 6.0, the 

components with a low isoelectric point are still negatively charged and 

are easily eluted; whereas, at pH 5.5, some of these components are more 

positively charged and are thus adsorbed and retained on the column longer. 

This could result in the elution of a smaller FMF when myoglobin is 

chromatographed at pH 5.5. The components with an isoelectric point below 

6.0, under the right circumstances, could account for the elution of a 

small FMF at pH 5.5, and the altered elution curve at that pH. However, 

the presence of such components alone does not necessarily explain the 

formation of a FMF at pH 6.0, nor the re-equilibration of it on the column, 

with its total disappearance as a discrete fraction under certain condi

tions. 
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DISCUSSION 

The results presented in the previous section indicate that the 

microhetcrogeneity of myoglobin is not due to a protein-protein inter

action of myoglobin with a non-heme contaminant; is not eliminated by 

2-mercaptoethanol as suggested by Wolfson et al. (1967); is not due to the 

binding of metals by the protein (see experiment with EDTA); and is not 

due to the acid-alkaline forms of the protein as suggested in 1962 by 

Perkoff et al. (see experiment with cyanmetmyoglobin). The separation of 

acid-alkaline forms of myoglobin on a column is not a very likely explana

tion of microheterogeneity since a great deal of chromatography is carried 

out at pH values far below the pK of this reaction* 

However, the results do show that it is possible to obtain from two 

to five chromatographic fractions by varying column capacity and/or 

equilibrating pH. It is also possible to alter the size and number of 

fractions eluted by changing the pH (compare Fig. 2 at pH 5.9 to Fig. 5 

at pH 5.5, and Fig. 6 at pH 6.0 to Fig. 7 at pH 6.8). In each instance a 

larger FMF was eluted at the high pH. 

Edmundson and Hirs (1962a) showed five elution curves from IRC-50 

columns that demonstrated the sensitivity of the separations to small 

changes in pH. They showed that, at pH 5.92 the components movea relative

ly fast, with poor separation; at pH 5.82 they moved much more slowly with 

partial resolution; and at pH values below 5.82 they were strongly ad

sorbed to the resin. 

The results presented here indicate that the behavior of myoglobin 

from different species, or any one species, on chromatography is not as 
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conflicting as might appear at first from perusal of the literature. At 

o 
pH 6.8, Akeson and Theorell (1960) resolved horse myoglobin into two broad 

fractions on CM-Cellulose. At the same pH, Quinn et al. (1964) resolved 

bovine myoglobin into three fractions. At pH 7.2, Stockwell resolved 

sperm whale myoglobin into two fractions on CM-Cellulose. In this study, 

bovine myoglobin was resolved into two fractions at pll 6.8 (Fig. 7), and 

two fractions at pH 6.0 on a 2.5 x 5 cm column (Fig. 1). At pH 6.0 on a 

2.5 X 17.5 cm column (Fig. 2) bovine myoglobin was resolved into three 

fractions. This demonstrates the importance of starting pH as well as 

column capacity. 

Kardman et al. (1966) resolved sperm whale myoglobin into 4 (or 5) 

chromatographic fractions on CM-Cellulose. Edmundson and Hirs (1962a) ob

tained similar resolution on IRC-50. Rumen (1959) resolved seal myoglobin 

into 5 chromatographic fractions. Fig. 4 in this study shows that, under 

certain conditions, bovine myoglobin can be resolved into 4 or 5 such 

graded fractions. 

The only reported exception that is not completely explained on the 

basis of column capacity and/or equilibrating pH is the elution of 11 

heme-components by Atassi (1964) from the chromatography of sperm whale 

myoglobin on CM-Cellulose columns. However, Atassi worked with the 

cyanmetmyoglobin derivative and his first three heme-components from the 

column were in the met form. Consequently, it is more difficult to 

evaluate his results. Also, Atassi is the only investigator to have re

ported better resolution on CM-Cellulose columns than on electrophoresis. 

He separated 11 heme-fractions on CM-Cellulose but only 4 components on 

electrophoresis. 
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However, none of these investigators mentions a FMF from CM-Cellulose 

columns. No fast-moving fraction is observed on electrophoresis of puri

fied myoglobin. The FMF seems to be uniquely tied in with CM-Cellulose 

chromatography. On electrophoresis, the FMF, unlike purified myoglobin and 

other CM-Cellulose fractions, seems to contain components that streak at 

high pH values, and which seem to have an isoelectric point below 6.0. 

On repeated rechromatography on CM-Cellulose more than 90% of the FMF is 

converted each time into Mb I and II. This conversion to components of a 

more positive charge is not observed on electrophoresis of the FMF at 

pH 6.0. Furthermore, the 409/280 nm ratios of the rechromatographed FMF 

are lower than for the original sample. It was shown that the low ratios 

are not due to a dilution effect but might be due to contamination with 

light-scattering material picked up on the column. Finally, it has been 

shown that, under certain conditions, this FliF re-equilibrates on the 

column and is not eluted as a discrete fraction. 

Similar conversions of one component to another on CM-Cellulose 

0 
columns have been reported by Akeson and Theorell (1960) for horse myo

globin, Atassi (1964) for sperm whale myoglobin, and Atassi and Saplin 

(1966) for finback whale myoglobin. Heterogeneity or interconversion of 

fractions from DEAE-Cellulose columns has been reported by all investiga

tors using this column material. However, Edmundson and Hirs (1962a) did 

report chromatographic homogeneity of sperm whale myoglobin fractions 

from IRC-50 columns. No explanation for this difference is immediately 

available. 

Atassi (1964) showed that polymerization of the protein is not in

volved in the conversion of one fraction to another. Evidence for a 
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pH-dependent polymerization of myoglobin has been presented in the litera

ture. However, this was always shown to occur at pH values below 5; i.e. 

at pH values below those used in chromatography and electrophoresis; see 

Rumen and Appella (1962), and Strausser and Sucsi (1965). Kardman et al. 

(1966) were the only investigators to suggest aggregation of metmyoglobin 

at pH 6.6 to 7.5. They found evidence for this in chromatograms from G-50 

and G-75 Sephadex columns. Their evidence shows 5% aggregation in myo

globin exposed to ammonium sulfate during purification, but only 1% aggre

gation in myoglobin isolated by the zinc-ethanol procedure. However, they 

did confirm the microheterogeneity of sperm whale myoglobin by chroma

tography and electrophoresis, and concur in the findings of numerous 

studies that indicate heterogeneity in the absence of aggregation. 

Atassi (1964) showed "interconversion" of sperm whale myoglobin frac

tions on electrophoresis. Electrophoretic heterogeneity of CM-Cellulose 

fractions has also been shown by Atassi and Saplin (1966) for finback 

o 
whale myoglobin, Akeson and Theorell (1960) for horse myoglobin, Quinn 

et al. (1964) for bovine myoglobin fractions. 

All investigators who used BSAE-Cellulose reported these fractions 

heterogeneous on electrophoresis: Perkoff et al. (1962) for human myo

globin; Quinn et al. (1964) for bovine myoglobin; Hardman et al« (1966) 

o 
for sperm whale myoglobin; Akeson and Theorell (1960) for horse myoglobin. 

These results are in substantial agreement with the findings in this study 

where it has been sho^m that all CM-Cellulose fractions are electro-

phoretically heterogeneous and that electrophoretic components can be 

further separated on electrophoresis in a second dimension. 

It has been shown that e-1 is converted to e-1, e-2 and e-3 on 
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re-electrophoresisu It has also been shown that, at pll 6.0, the pre

dominant electrophoretic components are: e-1 in purified myoglobin; e-1 

in Mb I ; e-2 in Mb II; e-3 and e-4 in the FKF, though small amounts of the 

other components are also present in each fraction. At pH values above 

8.0 there is a change in the proportions of the electrophoretic components: 

purified myoglobin contains graded amounts of e-1 to e-4 with e-1 predom

inating; Mb I still contains mostly e-1 but has more e-2 and e-3 than at 

pH 6.0; Mb II has more e-1, e-3 and e-4 than at pH 6.0, and the FMF has 

more e-1 and e-2 than at pH 6.0. Furthermore, re-electrophoresis of e-1 

at the same pH results in its conversion to e-1, e-2, e-3 and possibly 

e-4. 

Chromatographic and electrophoretic results presented here indicate 

that myoglobin components undergo a pK dependent change in proportions. 

Several reasons for the microheterogeneity of myoglobin have been 

proposed in the literature. Edmundson and Hirs (1962a) found no differ

ence in amino acid content of the fractions from sperm whale myoglobin. 

However, they suggested that the differences may lie in variations of 

total amide content for the glutamic and aspartic residues. Hardman et al. 

(1966) concurred with the suggestion of a difference in primary structure. 

However, no concrete evidence of an amide difference was presented. In 

o 
fact, Akeson and Theorell (1960) ruled out a difference in total amide 

nitrogen for horse myoglobin fractions. They also found no difference in 

amino acid content. Rumen (1960) found no differences in amino acid con

tent for seal myoglobin fractions. Gillespie et al. (1966) suggested as 

a possible explanation of microheterogeneity the binding of a phosphate 

ion to the distal E-7 histidine residue where a sulfate is bound in the 
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crystal. 

The interconversion of fractions reported in this study is not com

patible with a primary structure difference. However, it does suggest the 

possibility of differences in tertiary structure of the components. Such 

a difference in tertiary structure of the various myoglobin components is 

apt to be small since only small differences in spectra have been reported 

for the various fractions. 

There is some evidence to support the theory of a difference in the 

tertiary structure of the various fractions. Rumen (1959) found a differ

ence in isoelectric points of seal Mb I an-' II (Mb III, IV and V were not 

studied due to lack of protein). Vastcrbeig (1967) isolated horse myo-

o 
globin by the method of Akeson and Theorell (I960). He showed that the 

three major purified fractions had pi values of 7.76, 7.32 and 7.26. He 

also showed that the first heterogeneous fraction eluted from a CM-Cellu-

lose column contained three components with pi values of 6.89, 6.85 and 

6.80. Allowing for species differences, the FKF in this study has been 

sho^TO to differ from the other fractions in that it contains electropho-

retic components with an isoelectric point below 6.0. The nature of these 

components in bovine myoglobin has not been determined. 

Further evidence for a difference in configuration of Mb fractions has 

been presented by Breslow and Rumen (1967). Their titration studies showed 

that fraction V is missing 2 histidine residues normally exposed to sol

vent in fractions I and II. This evidence indicates a difference in 

tertiary structure. 

Assumed differences in tertiary structure are compatible with results 

o 
presented in this study. Akeson and Theorell (1960) stated that a 
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difference in tertiary structure would explain their electrophoretic re

sults « However, as they pointed out, a difference in tertiary structure 

of the protein does not explain the additional peptides found in their 

"fingerprints" of Mb I and Mb 11^* They suggest that a different distri

bution of the amide groups within the molecule could cause large enough 

shifts of dissociation constants of appropriate groups to account for 

differences in electrophoretic mobilities, and would also give rise to 

differences in peptide patterns. However, they suggest that a difference 

of constituents other than amino acids must be kept in mind. 

A difference in the distribution of amide groups within the molecule, 

thus the existence of two similar species of peptides that differ only in 

charge would result in different rates of migration of the peptides, and 

their separation. However, if the same reasoning is applied to two co

existing species of myoglobin molecules in solution, it is difficult to 

see how either species, once separated, as for instance e-1, could convert 

into the other; or if they were in equilibrium one with the other, how 

they could be separated to begin with. 

Akeson and Theorell (1960) ruled out a difference in tertiary struc

ture alone for two reasons: the fact that it does not explain the two 

additional peptides, and because the myoglobin components could not be 

separated on the ultracentrifuge. However, a configurational difference 

has to be rather large in order to obtain an ultracentrifugal separation 

(personal communication, Dr. Barrel E. Goll). 

These pH-dependent changes in the proportions of myoglobin components 

are not compatible with a primary structure difference. However, they are 

indicative of differences in tertiary structure. Furthermore, the possi
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(1965) has not been eliminated„ 

In conclusion, even though there seems to be no good biological 

reason for the existence of more than one myoglobin, the evidence for the 

microheterogeneity of this protein from different species, purified in 

different ways, is overwhelming. However, because of the numerous treat

ments to which the protein is subjected in the process of isolation and 

purification, one cannot entirely rule out the possibility of an artifact. 
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SUDIMÂRY A2>D CONCLUSIONS 

This study has shoxm that the nicroheterogeneity of bovine myoglobin 

is not caused by a protein-protein interaction of myoglobin with a non-

heme contaminating protein; is net eliminated by 2-mercaptoethanol; is not 

due to the binding of metal ions; is not due to the acid-alkaline forms of 

the protein. 

Evidence obtained in this study indicates that the number of bovine 

myoglobin fractions obtained from CM-Cellulose columns can be varied from 

2 to 5 depending on the experimental conditions used. It has been shovm 

that, under certain conditions, a fast-moving myoglobin fraction is eluted 

from CM-Cellulose columns. The size of this fast-moving fraction can be 

reduced at low pH values, and increased at high pH values. 

Moreover, this fast-moving fraction, under certain conditions, re-

equilibrates with the column material instead of being eluted as a dis

crete fraction. A rise in pH of the effluent is observed at the start of 

eluting a column. This rise in pH may contribute in part to the formation 

of the fast-moving fraction, and may be caused by the displacement of more 

basic potassium ions by less basically charged protein groups on the ex

changer. Repeatedly, on rechromatography at pH 6.0, over 90% of the fast-

moving fraction is converted to the components with a more positive charge. 

This conversion does not occur on electrophoresis of the fast-moving 

fraction at pH 5.0. Electrophoresis of purified myoglobin results in the 

separation of at least four, maybe five or six electrophoretic components, 

but not of a fast-moving component as observed on CM-Cellulose columns. 

The fast-moving fraction seems to be uniquely tied in with CM-Cellulose 
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chromatography. None of the CM-Cellulose fractions were found homogeneous 

on electrophoresis. 

A pH-dependent shift in the proportions of myoglobin components was 

shown on electrophoresis. At pH 8.0 or above a larger proportion of the 

more negatively charged components are formed than at pH 6.0. At pH 6.0 

or below, the more positively charged components predominate. On re-

electrophoresis of the major electrophoretic component at the same pH, 

some of the fraction is converted into the minor components. 

It was concluded that the interconversion of fractions is not 

compatible with a primary structure difference. However, the pH-dependent 

shift in the proportions of myoglobin fractions could be due to a differ

ence in tertiary structure of the components. However, the possibility 

of the binding of an ion by some of the molecules has not been eliminated 

by the results presented in this study. 
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